Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized
Autologous bone graft has been used in the treatment of complex bone defects for more than a century. Morbidity associated with the harvest of this bone graft has led orthopaedic surgeons to seek alternative therapies in the treatment of long bone non-unions. The aim of this study was to determine whether the use of demineralised
The purpose of this study was to understand the effects of terminal sterilisation and residual calcium on human demineralised
Introduction. Tendon injuries remain challenging, secondary healing and prolonged immobilisation result in suboptimal outcome. Previous study by our group showed that demineralised
Introduction. Demineralised
Aim. infected segmental bone defect (ISBD) is frequent in developing countries. The aim of this study was to assess the efficacy of the Masquelet technique in the treatment of ISBD in a low-resource setting. Patients and Method. We performed a prospective cohort study during the period from 2018 to 2022. Patients with infected bone defect of long bones were included. Management protocol consisted of two stages in all patients. The first stage consisted in debridement, tissues biopsy for microbiological culture, stabilization with external fixator and defect filling with gentamicin cement spacer. The second stage consisted of reconstruction using a cancellous bone autograft alone, or a mixture of autograft with allograft (demineralized
Previously, we reported impaired biomechanical bone properties and inferior
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods
Objectives. Despite promising results have shown by osteogenic cell-based demineralized
Background. Despite promising results have shown by osteogenic cell-based demineralized
Wear and osteolysis are the major problems limiting the longevity of total hip arthroplasty. There is general agreement that if left untreated osteolysis will eventually lead to loosening of the acetabular component. In many cases polyethylene liner exchange may be preferable to revision of a well-fixed acetabular component. If there is osteolysis present the question is when should the polyethylene liner exchange be performed? The answer to that question has not been definitively defined at the present time. There are few studies available that evaluate the timing of surgical intervention when acetabular osteolysis is present. Indications for surgical intervention include prevention of complete wear of the head through the polyethylene liner (liner thickness < 1.5 mm) and when the osteolysis involves 50% or more of the shell circumference on AP or lateral x-rays. Of course persistent pain with wear or osteolysis is another indication for surgery. Contraindications to cup retention and liner exchange include: 1) Malpositioned component; 2) Non-modular component; 3) Unable to obtain hip stability; 4) Thin polyethylene liner (relative); 5) Severe damage to acetabular shell; and 6) Poor track record of the acetabular component. If one decides to retain the component the following steps are generally involved in operative management. Remove the liner and assess component stability. Assess the locking mechanism for the polyethylene. If the locking mechanism is not intact one can consider cementing the liner in place. In general, it is recommended to debride and bone graft the osteolytic lesion. The author prefers to use an access hole at the periphery of the component or at times a trapdoor can be made in the ilium. It is essential not to de-stabilise the acetabular component. At the present time there is no optimal graft material to use. Potential graft options include demineralised
Aim. This study describes and correlates the radiographic and histologic changes which develop in a Gentamicin-eluting synthetic bone graft substitute. *. in the management of bone defects after resection of chronic osteomyelitis (COM). Method. 100 patients with COM were treated with a single stage procedure, including management of the dead space with insertion of a Gentamicin-eluting synthetic bone graft substitute. *. Radiographs of 73 patients with a follow-up of at least 12 months (range 12–33 months) were available for review. Bone defects were diaphyseal in 32, metaphyseal in 34 and combined in 7 patients. In 3 patients, radiographs were not of sufficient quality to allow analysis. Five patients had subsequent surgery, not related to recurrence of infection, which allowed biopsy of the implanted material. These biopsies were harvested between 12 days and 9 months after implantation. Tissue was fixed in formalin and stained with haematoxylin-eosin and immunohistochemically for
Evaluation of the effectiveness of biodegradable bone substitute with high doses of antibiotics in cavitary osteomyelitis and infected nonunions. The authors evaluated 8 cases, 5 of them related to osteomyelitis with bone sequestration and other 3 regarding infected nonunions. All of them had in common the persistence of infection after antibiotic therapy. All infections were confirmed by microbiological studies. In all cases the surgeons conducted a thorough surgical debridement and filling of bone defects with Herafill®. Later a tight clinical, analytical and imagiological control was performed. Five of the cases were a success with simultaneous healing of the bone loss and treatment of the infection. These corresponded to the cases of cavitary osteomyelitis. In the remaining 3 cases, despite infection eradication, union was not achieved and additional surgical procedures were required for definitive treatment of nonunion. In the treatment of bone infection, use of high doses of antibiotics at the site is a consensus as it allows eradication of the infection with lower systemic effects. With the emergence of biodegradable bone substitutes, the need for a new surgical intervention for their removal can be avoided. Properties of calcium sulfate and calcium carbonate stimulate osteogenesis at the site, allowing their absorption and replacement by
Background. In 2012, the National Joint Registry recorded 86,488 primary total hip replacements (THR) and 9,678 revisions (1). To date aseptic loosening remains the most common cause of revision in hip and knee arthroplasty, accounting for 40% and 32% of all cases respectively and emphasising the need to optimise osseointegration in order to reduce revisions. Clinically, osseointegration results in asymptomatic stable durable fixation of orthopaedic implants. Osseointegration is a complex process involving a number of distinct mechanisms affected by the implant surface topography, which is defined by surface orientation and surface roughness. Micro- and nano-topography levels have discrete effects on implant osseointegration and yet the role on cell function and subsequent bone implant function is unknown. Nanotopography such as collagen banding is a critical component influencing the SSC niche in vivo and has been shown to influence a range of cell behaviours in vitro (2,3). We have used unique fabricated nanotopographical pillar substrates to examine the function of human bone stem cells on titanium surfaces. Aim. To investigate the effect of nanotopographical cues on adult skeletal stem cell (SSC) fate, phenotype and function within in-vitro environments. Materials and methods. Adult human skeleltal stem cells (SSCs) were immunoselected and enriched using STRO-1 antibody and cultured on tissue culture plastic (TCP) and titanium-coated nanotopgraphical substrates (illustrated in Figure 1). Following culture, metabolic activity of SSCs on TCP and Ti substrates was compared. Subsequently, osteoinductive potential was analysed under basal and osteogenic conditions (four groups: TCP in basal media, TCP in osteogenic media, Ti planar substrates basal and Ti pillar substrates basal). Results. At 7 days, cell metabolic activity was significantly enhanced on Ti substrates, specifically on Ti pillars of defined height in comparison to TCP (Figure 2). Following culture on defined topographies for 21 days, expression of the
Long-term biological fixation and stability of uncemented acetabular implant are influenced by peri-prosthetic bone ingrowth which is known to follow the principle of mechanoregulatory tissue differentiation algorithm. A tissue differentiation is a complex set of cellular events which are largely influenced by various mechanical stimuli. Over the last decade, a number of cell-phenotype specific algorithms have been developed in order to simulate these complex cellular events during bone ingrowth. Higher bone ingrowth results in better implant fixation. It is hypothesized that these cellular events might influence the peri-prosthetic bone ingrowth and thereby implant fixation. Using a three-dimensional (3D) microscale FE model representing an implant-bone interface and a cell-phenotype specific algorithm, the objective of the study is to evaluate the influences of various cellular activities on peri-prosthetic tissue differentiation. Consequently the study aims at identifying those cellular activities that may enhance implant fixation. The 3D microscale implant-bone interface model, comprising of Porocast Bead of BHR implant, granulation tissue and bone, was developed and meshed in ANSYS (Fig. 1b). Frictional contact (µ=0.5) was simulated at all interfaces. The displacement fields were transferred and prescribed at the top and bottom boundaries of the microscale model from a previously investigated macroscale implanted pelvis model (Fig. 1a) [4]. Periodic boundary conditions were imposed on the lateral surfaces. Linear elastic, isotropic material properties were assumed for all materials. Young's modulus and Poisson's ratios of bone and implant were mapped from the macroscale implanted pelvis [4]. A cell-phenotype specific mechanoregulatory algorithm was developed where various cellular activities and tissue formation were modeled with seven coupled differential equations [1, 2]. In order to evaluate the influence of various cellular activities, a Plackett-Burman DOE scheme was adopted. In the present study each of the cellular activity was assumed to be an independent factor. A total of 20 independent two-level factors were considered in this study which resulted in altogether 24 different combinations to be investigated. All these cellular activities were in turn assumed to be regulated by local mechanical stimulus [3]. The mechano-biological simulation was run until a convergence in tissue formation was attained. The cell-phenotype specific algorithm predicted a progressive transformation of granulation tissue into bone, cartilage and fibrous tissue (Fig. 1c). Various cellular activities were found to influence the time to reach equilibrium in tissue differentiation and, thereby, attainment of sufficient implant fixation (Fig. 2, Table 1). Negative regression coefficients were predicted for the significant factors, differentiation rate of MSCs and
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised
Osteocytes (OCY) are the end stage differentiation cells of the osteoblast lineage, and are incorporated in the
Aim. To compare a variety of commercially available bone graft substitutes (BGS) in terms of promoting adherence, proliferation and differentiation of osteoprogenitor cells. Materials and methods. A fixed number of porcine mononuclear cells obtained from cancellous bone of the proximal femur was mixed with a standard volume of BGS and then cultured for one week in media followed by two weeks in osteogenic media. BGS included commercially available β-Tricalcium Phosphate (□-TCP), highly porous β-TCP, Hydroxyapatite/Tricalcium phosphate composite, calcium sulphate (CS), Hydroxyapatite (HA), Demineralised
Purpose. The focus of current management of soft tissue sarcoma on limb preservation often necessitates that patients undergo multimodal treatment, including both surgery and external beam radiotherapy. Pathologic fracture is a serious, late complication of radiotherapy. In patients who have also undergone wide excision of soft tissue sarcoma, nonunion rates of 80–90% persist despite optimal internal fixationMany sequelae of the treatments for soft tissue sarcoma exhibit the potential to perpetuate failure of bony union. Limb salvage surgery is associated with extensive periosteal excision, disruption of vascular supply and eradication of local osteoprogenitor cells. External beam radiotherapy leads to obliterative endarteritis, decreased osteoblast proliferation and reduction in
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis. Osteolysis is an active biological process initiated
in response to wear debris. The eventual response to this process
is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade
resulting in the final common pathway of an increase in osteolytic
activity. The biological initiators, mechanisms for and regulation
of this process are beginning to be understood. This article explores current
concepts in the causes of, and underlying biological mechanism resulting
in peri-prosthetic osteolysis, reviewing the current basic science
and clinical literature surrounding the topic.