Osteoinductive bone substitutes are in their developmental infancy and a paucity of effective grafts options persists despite clinical demand. Bone mineral substitutes such as hydroxyapatite cause minimal biological activity when compared to osteoinductive systems present biological growth factors in order to drive
Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with
The aim of this study was to evaluate the radiological outcome of patients with large bone defects in the femur and tibia who were treated according to the guidelines of the diamond concept in our department (Centre for Orthopedics, Trauma Surgery, and Paraplegiology). The following retrospective, descriptive analysis consists of patients treated in our department between January 2010 and December 2021. In total, 628 patients were registered, of whom 108 presented with a large-sized defect (≥ 5 cm). A total of 70 patients met the inclusion criteria. The primary endpoint was radiological consolidation of nonunions after one and two years via a modified Lane-Sandhu Score, including only radiological parameters.Aims
Methods
Introduction. iPSCs represent a promising cell source for
Abstract. Distraction Osteogenesis (DO) for the management of bone defects in long bones is an established technique. Problems with
Introduction. We evaluated the osteogenic potential of a novel biomimetic bone paste (DBSint®), made of a combination of a human demineralized bone matrix (hDBM) and a nano-structured magnesium-enriched hydroxyapatite (Mg-HA), in a standardized clinical model of high tibial osteotomy for genu varus. Methods. A prospective, randomized, controlled study was performed and thirty patients were enrolled and assigned to three groups: DBSint® (Group I), nano-structured Mg-HA (SINTlife®) (Group II) and lyophilized-bone-chips (Group III). Six weeks after surgery, computed tomography-guided biopsies of the grafts were performed. Clinical/radiographic evaluation was performed at six weeks, twelve weeks, six months, one and 2 year after surgery, in order to verify if the graft type influenced the healing rate. Results. By histomorphometry, DBSint® was shown able to promote a quick and effective bone tissue regeneration, superior to the healing process occurred in presence of SINTlife® and lyophilized bone chips. At a mean follow up of 32,59 months, no statistical differences between the groups were found, both pre-and post-operatively, according to the Knee Society Scoring System. Mean time of ostointegration was 3,9 months in the DBSint® group, 4,2 months in the lyophilized-bone group and 4,5 in the SINTlife® group. Discussion/conclusion. Orthopedic practice may be adversely affected by an inadequate bone repair that might compromise the success of surgery. Therapy for
We hypothesise that the Masquelet induced membrane used for the reconstruction of large bone defects were likely to involve mesenchymal stem cells (MSCs), given the excellent resultant skeletal repair. This study represents the first characterisation in humans of the induced membrane formed as a result of the Masquelet technique. Methods. Induced membranes and matching periosteum were harvested from 7 patients. Cytokines (BMP2, VEGF, SDF1) and cell lineage markers (CD31, CD271, CD146) were studied by immunohistochemisty. Flow cytometry was used to measure the cellularity and cellular composition. MSCs were enumerated using a colony forming unit fibroblast assay. In expanded cultures, a 96-gene array card was used to assess their transcriptional profile. Alkaline phophatase, alizarin red and calcium assays were employed to measure their in vitro osteogenic potential. Results. Membrane was more cellular(p=0.028), had more MSC phenotype(p=0.043) compared to matched periosteum. The molecular profiles were similar, except for 2-fold abundance of SDF-1 in membrane (p=0.043)compared to periosteum. Membrane and periosteum had a similar proportion of endothelial cells and CFU-F colonies; expanded MSCs from both sources were highly osteogenic. Discussion. These results indicate that the induced membrane possesses a rich source of MSC and therefore our findings support the view that the induced membrane plays an active role in
Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating
To clarify the effectiveness of the induced membrane technique (IMT) using beta-tricalcium phosphate (β-TCP) for reconstruction of segmental bone defects by evaluating clinical and radiological outcomes, and the effect of defect size and operated site on surgical outcomes. A review of the medical records was conducted of consecutive 35 lower limbs (30 males and five females; median age 46 years (interquartile range (IQR) 40 to 61)) treated with IMT using β-TCP between 2014 and 2018. Lower Extremity Functional Score (LEFS) was examined preoperatively and at final follow-up to clarify patient-centered outcomes. Bone healing was assessed radiologically, and time from the second stage to bone healing was also evaluated. Patients were divided into ≥ 50 mm and < 50 mm defect groups and into femoral reconstruction, tibial reconstruction, and ankle arthrodesis groups.Aims
Methods
Introduction. Osteochondral defects (OCDs) of the talus are treated initially by arthroscopic bone marrow stimulation. For both large and secondary defects, current alternative treatment methods have disadvantages such as donor site morbidity or two-stage surgery. Demineralized bone matrix (DBM) was published for the treatment of OCDs of rabbit knees. Autologous platelet-rich plasma (PRP) may improve the treatment effect of DBM. We previously developed a goat model to investigate new treatment methods for OCDs of the talus. The aim of the current study was to test whether DBM leads to more
The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT. A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.Aims
Methods
In this randomized study, we aimed to compare quality of regenerate in monolateral Both groups were comparable in demographic and injury characteristics. A phantom (aluminium step wedge of increasing thickness) was designed to compare the density of regenerate on radiographs. A CT scan was performed at three and six months postoperatively to assess regenerate density. A total of 30 patients (29 male, one female; mean age 32.54 years (18 to 60)) with an infected nonunion of a tibial fracture presenting to our tertiary institute between June 2011 and April 2016 were included in the study.Aims
Patients and Methods