Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
Purpose. To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for peri-acetabular osteotomy [PAO] surgery. Methods. A
Because ankle inversion trauma can result in persistent isolated subtalar joint instability and can contribute to chronic lateral ankle instability, optimization of subtalar joint ligament injury diagnosis and treatment is essential. 12 fresh-frozen cadaver lower extremities were used. The cradle was a component of a gimbal system that allowed unrestricted inversion/eversion and anterior-posterior and medial-lateral translation of the subtalar joint. The bearing system to which the tibia/fibula were attached allowed unconstrained internal/external rotation and superior-inferior translation. 4N-m inversion/ eversion and internal/external rotational moments and translational forces of 67N were applied. All measurements were performed sequentially in neutral, 10° dorsiflexion and 20° plantarflexion, and were repeated as the cervical, calcaneofibular, and interosseous ligaments were consecutively sectioned in all possible different orders. In neutral position, inversion increased after sectioning of the cervical (3.7°), interosseous (0.8°), and calcaneofibular (1.9°) ligaments individually. Combined sectioning of all three ligaments showed an increase in inversion of 8.3°, 8.5° and 1.4° in the neutral, plantarflexed, and dorsiflexed positions, respectively, compared to the intact ankle. External rotation also increased in neutral position after sectioning the cervical ligament (2.0°). Combined sectioning of all ligaments showed an increase in external rotation of 3.6° and 5.4° for neutral and dorsiflexion, respectively. This is the first comprehensive biomechanical
Objectives. To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. Methods. CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student’s t-test and Mann–Whitney U test were used. Results. Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the PSI cases, deviations were 10% (n = 3) and 0 % (n = 0), respectively. For angular deviation from pre-operative plans, we observed a mean improvement of 7.06° (p < 0.001) in pitch and 2.94° (p < 0.001) in roll, comparing PSI and the standard manual technique. Conclusion. In an experimental study, computer-assisted planning and PSIs improved accuracy in pelvic tumour resections, bringing osteotomy results closer to the parameters set in pre-operative planning, as compared with standard manual techniques. Cite this article: A. Sallent, M. Vicente, M. M. Reverté, A. Lopez, A. Rodríguez-Baeza, M. Pérez-Domínguez, R. Velez. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a
Aims. Accurate placement of acetabular and femoral stem components in total hip arthroplasty (THA) is an important factor in the success of the procedure. A variety of free hand or navigated techniques is reported. Survivorship and complications have been shown to be directly related to implant position during THA. The aim of this
Introduction. Knee instability, stiffness, and soft-tissue imbalance are causes of aseptic revision and patient dissatisfaction following total knee arthroplasty (TKA). Surgical techniques that ensure optimal ligament balance throughout the range of motion may help reduce TKA revision for instability and improve outcomes. We evaluated a novel tibial-cut first gap balancing technique where a computer-controlled tensioner is used to dynamically apply a varying degree of distraction force in real-time as the knee is taken through a range of motion. Femoral bone cuts can then be planned while visualizing the predicted knee implant laxity throughout the arc of flexion. Surgical Technique Description. After registering the mechanical axes and morphology of the tibia and femur using computer navigation, the tibial resection was performed and a robotic tensioning tool was inserted into the knee prior to cutting the femur. The tool was programmed to apply equal loads in the medial and lateral compartments of the knee, but to dynamically vary the distraction force in each compartment as the knee is flexed with a higher force being applied in extension and a progressively lower force applied though mid-flexion up to 90° of flexion. The tension and predictive femoral gaps between the tibial cut and the femoral component in real-time was determined based on the planned 3D position and size of the femoral implant and the acquired pre-resection gaps (figure 1). Femoral resections were then performed using a robotic cutting guide and the trial components were inserted. Methods. The technique was evaluated by three experienced knee arthroplasty surgeons on 4 cadaver knees (3 torso-to-toe specimens, Pre-operative deformity range: 4° varus − 6° valgus; Extension lag: 0° – 13°; BMI 23.4 – 32.6; Age 68 – 85yr). An applied targeted load of 80N in extension and 50N in flexion was used in each of the four knees. These force values were determined in a prior
One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).Aims
Methods
Scapholunate instability is the most common cause of carpal instability. When this instability is left untreated, the mechanical relationship between the carpal bones is permanently disrupted, resulting in progressive degenerative changes in the radiocarpal and midcarpal joints. Different tenodesis methods are used in the treatment of acute or early chronic reducible scapholunate instability, where arthritis has not developed yet and the scapholunate ligament cannot be repaired. Although it has been reported that pain is reduced in the early follow up in clinical studies with these methods, radiological results differ between studies. The deterioration of these radiological parameters is associated with wrist osteoarthritis as previously stated. Therefore, more studies are needed to determine the tenodesis method that will improve the wrist biomechanics better and will last longer. In our study, two new tenodesis methods, spiral antipronation tenodesis, and anatomic front and back reconstruction (ANAFAB) were radiologically compared with triple ligament tenodesis (TLT), in the cadaver wrists. The study was carried out on a total of 16 fresh frozen cadaver wrists. Samples were randomly allocated to the groups treated with 3 different scapholunate instability treatment methods. These are TLT (n: 6), spiral antipronation tenodesis (n: 5) and ANAFAB tenodesis (n: 5) groups. In all samples SLIL, DCSS, STT, DIC, RSC and LRL ligaments were cut in the same way to create scapholunate instability. Wrist CT scans were taken on the samples in 4 different states, in intact, after the ligaments were cut, after the reconstruction and after the movement cycle. In all of these 4 states, wrist CTs were taken in 6 different wrist positions. For every state and every position through tomography images; Scapholunate (SL) distance, Scapholunate (SL) angle, Radioscaphoid (RS) angle, Radiolunate (RL) angle, Capitolunate (CL) angle, Dorsal scaphoid translation (Dt) measurements were made.Introduction and Objective
Materials and Methods
Introduction: Femoral neck fractures are common and percutaneous insertion of three cannulated screws is an accepted method of surgical treatment. The accuracy of surgical performance is highly correlated with the cut-out percentages of the screws. The conventional technique relies heavily on fiuoroscopy and could lead to inappropriate implant placement. Further, multiple guidewire passes might prolong the operation time and weaken the cancellous bone. A computer-assisted planning and navigation system based on 2D-fiuoroscopy has been developed for guidewire insertion in order to perform insertion of a guidewire to perform screw insertion. The image acquisition process was supported by a radiation-saving procedure called “Zero-dose C-arm navigation”. The purpose of this experimental study was to compare this technique with conventional C-arm fiuoroscopy with respect to the number of fiuoroscopic images, the number of drilling attempts and operation time. We used two operative settings, with sawbones and with cadavers. For the sawbone study, we also compared the femoral neck and head perforation and the neck-width coverage (the relative area of the femoral neck held by screws). Methods: Three cannulated hip screws were inserted into 12 femoral sawbones simulating femoral neck fractures and into 6 cadaveric femurs guided by the computer-based navigation. We compared them to the conventional fiuoroscopic technique also using 12 femoral sawbones and 6 cadaveric femurs. Results: The computer-assisted technique significantly reduced the amount of intraoperative fiuoroscopy (sawbone study: P<
0.001;
Direct anterior approach (DAA) is an inter-muscular approach that needs no muscle detached. In THA through DAA approach, exposure of the acetabulum is facilitated, while the key points of this approach are femoral lift-up and hip extension to get sufficient access to the femoral canal. To investigate the strategy for femoral lift-up, we released the capsule step by step and measured the distance of femoral lift-up at each step in cadavers and clinical cases. The effects of hip extension on femoral lift-up were also evaluated. Three fresh frozen cadavers were used. In supine position, the hip joint was exposed through DAA by two experienced surgeons. After anterior capsulotomy and femoral head resection, posterior capsule release was performed followed by superior capsule release in one side, and superior release was followed by posterior release in the other side. Finally, internal obturator muscle was released in both side. At each step, the distance of femoral lift-up was measured under the traction force of 70N. The effects of hip extension were investigated in 0, 15 and 25 degrees hyper-extension. Thirty-six THA were performed through DAA. Posterior capsule release was performed followed by superior capsule release in 13 hips, and superior release was followed by posterior release in 23 hips. At each step, the distance of femoral lift-up was measured under the traction force of 70N at each step same as the
Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation and impingement, Transverse acetabular ligament (TAL) have been shown to be a reliable landmark to guide optimum acetabular cup position. Reports of iliopsoas impingement caused by acetabular components exist. The Psoas fossa (PF) is not a well-regarded landmark for Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. A total of 22 cadavers were implanted on 4 occasions with the an uncemented acetabular component. Measurements were taken between the inner edge of TAL and the base of the acetabular component and the distance between the lower end of the PF and the most medial end of TAL. The distance between the edge of the acetabular component and TAL was a mean of 1.6cm (range 1.4–18cm). The distance between the medial end of TAL and the lowest part of PF was a mean of 1.cm (range 1,3–1.8cm) It was evident that the edge of PF was not aligned with TAL. Optimal acetabular component position is vital to the longevity and outcome following THA. TAL provides a landmark to guide acetabular component position. However we feel the PF is a better landmark to allow appropriate positioning of the acetabular component inside edge of the acetabulum inside the bone without exposure of the component rim and thus preventing iliopsoas impingement at the psoas notch and resultant groin pain.Abstract
Introduction. Posterolateral tibial plateau fractures account for 7 % of all proximal tibial fractures. Their fixation often requires posterolateral buttress plating. Approaches for the posterolateral corner are not extensile beyond the perforation of the anterior tibial artery through the interosseous membrane. This study aims to provide accurate data about the inferior limit of dissection by providing measurements of the anterior tibial artery from the lateral joint line as it pierces the interosseous membrane. Materials and Methods. Forty unpaired adult lower limbs cadavers were used. The posterolateral approach to the proximal tibia was performed as described by Frosch et al. Perpendicular measurements were made from the posterior limit of the articular surface of the lateral tibial plateau and fibula head to the perforation of the anterior tibial artery through the interosseous membrane. Results. The anterior tibial artery coursed through the interosseous membrane at 46.3 +/− 9.0 mm (range 27–62 mm) distal to the lateral tibial plateau and 35.7 +/− 9.0 mm (range 17–50 mm) distal to the fibula head. There was no significant difference between right or left sided knees. Discussion. This
To develop a useful surgical navigation system, accurate determination of bone coordinates and thorough understanding of the knee kinematics are important. In this study, we have verified our algorithm for determination of bone coordinates in a
Introduction: The main purpose of this study was to analyze the accuracy of conventional versus navigated open wedge corrective osteotomies of the proximal tibia. Furthermore, the intraoperative radiation dosage and the time of the operative procedure of both groups were compared. Methods: 20 legs of 11 fresh cadaver (9 male, 2 female, age 35–71 years) were randomly assigned to conventional open wedge high tibial osteotomy (HTO) (n=10) or navigated open wedge HTO (n=10). Two legs had to be excluded because of pre-existing knee injuries. The aim of all corrective operations was to align the mechanical axis to pass through 80% of the tibial plateau (80% Fujisawa line), regardless of the preexisting alignment. The intraoperative mechanical axis was evaluated either by the cable technique for conventional HTO, or by a navigation module for navigated HTO (Medivision, Oberdorf/Switzerland). An angle fixed implant with interlocking screws (Tomofix, Mathys, Bettlach/Switzerland) was used to minimize postoperative loss of correction. Postoperatively, CT-scans were performed and the Fujisawaline and MPTA measured with a computer software for deformity analysis (Med-iCAD) The main outcome parameter was the accuracy of the correction, which was measured by the Fujisawa line. Secondary outcome parameters were the intraoperative radiation measured by the dose area product and the time of the operative procedure. For statistical analysis the standard deviation (S.D.) was calculated and the paired t-test applied. Results: After conventional HTO, the mechanical axis was intersecting the Fujisawa line at 72.1% of the tibial plateau (range 60.4–82.4%, S.D. 7.2%). In contrast, after navigated HTO the tibia plateau was passed through 79.7% (range 75.5–85.8%, S.D. 3.3%). Thus, the accuracy of the correction was significantly higher after navigated HTO (p=0.020). In addition, the standard deviation of the corrections was significantly lower after navigated HTO (p=0.012). The medial proximal tibia angle (MPTA) increased 7.9° (range: 4.7–12.1°) after conventional HTO and 9.1° (range: 4.6–12.6°) after navigated HTO. The average dose area products of the conventional HTO (49.5 cGy/cm2, range 36.0–81.2 cGy/cm2) and navigated HTO (42.8 cGy/cm2, range 28.3–58.1 cGy/cm2) were comparable (p=0.231). However, navigated HTO elongated the operation time significantly (navigated HTO: 82 min, range 55–98 min; conventional HTO: 59 min, range 47–73 min) (p<
0.001). Conclusion: Continuous three-dimensional imaging of the axis and of intraoperative tools with the a navigation module significantly improves the accuracy of open wedge osteotomies of the proximal tibia. Prospective clinical studies will show whether the results of this
The insertion footprint of the different muscles tendon fascicles of the Achilles Tendon on the calcanium tuberosity has not been described before. Twelve fresh frozen leg specimens were dissected to identify the different Achilles Tendon fascicles insertion footprint on the calcaneum in relation to their corresponding muscles. Further ten embalmed cadaveric leg specimens were examined to confirm an observation on the retrocalcaneal bursa.Introduction:
Method:
Hypothesis. Recurrent shoulder dislocation is associated with bony defect of the glenoid rim, commonly seen along with bankart tear - a soft tissue injury of glenoid labrum. This
Roentgen stereophotogrammetric analysis (RSA) is currently the gold standard to measure early prosthetic migration which can predict aseptic loosening. However, RSA has some limitations such as the need for perioperative placed markers and exposure to X-radiation during follow up. Therefore, this study evaluates if low field MRI could be an alternative for RSA. Low field MRI was chosen because it is less hampered by metal artifacts of the prosthesis than high field MRI. 3D models of both the tibial component of a total knee prosthesis (Genesis II, Smith and Nephew) and the porcine tibia were made. The tibial component was implanted in the tibial bone. Consequently, 17 acquisitions with the low field MRI scanner (Esaote G-scan 0.25T) in transverse direction with a 2D PD weighted metal artifact reducing sequence PD-XMAR (TE/TR 10/1020ms, slice thickness 3mm, FOV 180×180×120 mm³, matrix size 224×224) were made. The first five acquisitions were made without repositioning the cadaver, the second twelve after slightly repositioning the cadaver within limits that are expected to be encountered in a clinical setting. Hence, in these 17 acquisitions no prosthetic-bone motions were induced. The scans were segmented and registered with Mimics. Virtual translation and rotation of the prosthesis with respect to the bone between two scans were calculated using a Procrustes algorithm. The first five scans without repositioning were used to calculate the measurement error, the following twelve to calculate the precision of low field MRI to measure prosthetic migration. Results were expressed as the maximum total point motion, mean error and 95% CI and expressed in boxplots.Introduction
Methods
Implant alignment in knee arthroplasty has been identified as critical factor for a successful outcome. Human error during the registration process for imageless computer navigation knee arthroplasty directly affects component alignment. This
Introduction: The purpose of this
Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation, impingement, abductor muscle strength and range of motion. Transverse acetabular ligament (TAL) and posterior labrum have been shown to be a reliable landmark to guide optimum acetabular cup position. There have been reports of iliopsoas impingement caused by both cemented and uncemented acetabular components. Acetabular component mal-positioning and oversizing of acetabular component are associated with iliopsoas impingement. The Psoas fossa (PF) is not a well-regarded landmark to help with Acetabular Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. A total of 12 cadavers were implanted with the an uncemented acetabular component, their position was initially aligned to TAL. Following optimal seating of the acetabular component the distance of the rim of the shell from the PF was noted. The Acetabular component was then repositioned inside the PF to prevent exposure of the rim of the Acetabular component. This study was performed at Smith & Nephew wet lab in Watford.Abstract
Background
Methods