Advertisement for orthosearch.org.uk
Results 1 - 20 of 52
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 12 - 12
1 Sep 2012
Hossain M Beard D Murray D Andrew G
Full Access

Introduction. Acetabular cup lucency predicts cup survival. The relationship of subchondral plate removal and cup survival is unclear. Using data from a prospective study conducted between January 1999 and January 2002 we investigated the role of subchondral plate removal in cemented acetabular cup survival at five years. Methods. A number of cemented cups were implanted using antero-lateral and posterior approaches.1400 cups were inserted. 935 cups (67%) were followed up at 5 years and acetabular radiolucency (AR) recorded. Results. F: M ratio was 1.88. The mean age was 66 (range 23–94). 325 cups had AR. AR was commonest in zone 1 (274). 126 cups has AR isolated to zone 1 only. AR ranged from 1–3 mm. Bone surface was clean and dry in 780 cases. High viscosity cement was used in 1391cases. Simplex was the commonest cement used (749) followed by CMW1 (347). Conventional UHMWPE acetabular liner was used in 755 and “Duration” in 644 patients. 719 Exeter cups and 363 flanged cups were inserted. Acetabular roof was decorticated in 844 and cement pressurised in 1269 cups. AR was more common if cement was not pressurised (52/78 not pressurised vs 268/850 pressurised, p=0.000), if subchondral plate was removed (219/561, p=0.002), and if Simplex or CMW1 was used instead of Palacos (p=0.000). AR after subchondral plate removal was equally common in the young and the older patients (>65 years). There was no difference in cup (p=0.55) or pressuriser type (p= 0.45) between those with or without AR. In a logistic regression model only cement pressurisation and type of cement used were predictive of AR (n=895, p=0.000). Subchondral bone removal became insignificant (p=0.443). Discussion. AR was only affected by cement pressurisation and type of cement used. Subchondral plate removal did not prove likely to affect 5 year cup survival


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 121 - 121
1 Jan 2016
Kokubo Y Uchida K Sugita D Oki H Negoro K Inukai T Miyazaki T Nakajima H Yoshida A Baba H
Full Access

Total hip arthroplasty (THA) is one of the preferable solutions for regaining ambulatory activity for patients with end-stage osteoarthritis, and the procedure is well developed technically and large numbers of patients benefit from THA worldwide. However, despite the improvements in implant designs and surgical techniques, revision rates remain high, and the number of revisions is expected to increase in the future as a result of the increase in the volume of primary THA and the increase in the proportion of younger, more active patients who are likely to survive longer than their prosthetic implants. In revision THA, associated loss of bone stock in the acetabulum presents one of the major challenges. The aim of the present study was to analyze the clinical and radiographic outcomes and Kaplan-Meier survivorship of patients underwent revision surgeries of the acetabular cup sustaining aseptic loosening. We reviewed consecutive 101 patients (120 hips; 10 men 11 hips; 91 women 109 hips; age at surgery, 66 years, range, 45–85) who underwent acetabular component revision surgery, at a follow-up period of 14.6 years (range, 10–30). For the evaluation of the state of the acebtabulum, acetabular bony defects were classified according to the classification of the AAOS based on the intraoperative findings as follows; type I [segmental deficiencies] in 24 hips, type II [cavity deficiency] in 48 hips, type III [combined deficiency] in 46, and type IV [pelvic discontinuity] in 2. Basically, we used the implant for acetabular revision surgery that cement or cementless cups were for the AAOS type I acetabular defects, cementless cup, or cemented cup with reinforcement device were for type II, cemented cup with reinforcement device were for type III. Follow-up examination revealed that Harris Hip score improved from 42.5±7.8 points before surgery to 76±16.2 points (p<0.05). The survival rates of the acetabular revision surgery with cemented cups, cementless cups, and cemented cups with reinforcement devices were 65.1%, 72.8%, and 79.8%, respectively, however, there was no significant differences between the groups. There were nine cases, which failed in the early stage in the groups of cementless cups and cemented cups with reinforcement devices, because of the instability of the cementless cups or breakage of reinforcement plates caused by inadequate bone grafting. We conclude that the usage of the cementless cups for type I and II acetabular bony defects, and the cemented cups with reinforcement devices for type III bony defects will demonstrate durable long-term fixation in case of adequate contact between acetabular components and host-bone with restoration of bone stock by impaction bone grafting


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2020
Ando W Hamada H Takao M Sugano N
Full Access

Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the CT-based navigation system and the use of large diameter femoral head. Methods. Sixteen hips of fifteen patients who underwent revision THA using allografts and BS cage between September 2013 and December 2017 were included in this study with the follow-up of 2.7 (0.1–5.0) years. There were 12 women and three men with a mean age of 78.6 years (range, 59–61 years). The cause of acetabular revision was aseptic loosening in all hips. The failed acetabular cup was carefully removed, and acetabular bone defect was graded using the Paprosky classification. Structural allografts were morselized and packed for all medial or contained defects. In some cases, solid allograft was implanted for segmental defects. BS cage was molded to optimize stability and congruity to the acetabulum and fixed with 6.5 mm titanium screws to the iliac bone. The inferior flange was slotted into the ischium. The upside-down trial cup was attached to a straight handle cup positioner with instrumental tracker (Figure 1) and placed on the rim of the BS cage to confirm the direction of the target angle for cement cup implantation under the CT-based navigation system (Stryker). After removing the cement spacer around the X3 RimFit cup (Stryker) onto the BS cage for available maximum large femoral head, the cement cup was implanted with confirming the direction of targeting angle. Japanese Orthopedic Association score (JOA score) of the hip was used for clinical assessment. Implant position, loosening, and consolidation of allograft were assessed using anterior and lateral radiographies of the pelvis. Results. Fifteen hips had a Paprosky IIIB defect, and one hip had a pelvic discontinuity. JOA score significantly improved postoperatively. No radiolucent lines and no displacement of BS cage could be found in 9 of 15 hips. Consolidation of allografts above the protrusion cage was observed in these patients. Displacement of BS cage (>5mm) was observed in 6 hips and displacement was stopped with allograft consolidation in 5 of 6 hips. The other patient showed lateral displacement of BS cage and underwent revision surgery. Average cup inclination and anteversion angles were 37.7±5.0 degree and 24.6±7.2 degree, respectively. 12 of 16 patients were included in Lewinnek's safe zone. One patient with 32 mm diameter of the femoral head had dislocation at 17 days postoperatively. All patients who received ≥36mm diameter of femoral head showed no dislocation. Conclusions. CT-based navigation system and the use of large femoral head may influence the prevention of dislocation in the acetabular revision surgery with BS cage for severe acetabular bone defects


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2020
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction. Biological repair of acetabular bone defects after impaction bone grafting (IBG) in total hip arthroplasty could facilitate future re-revisions in case of failure of the reconstruction again using the same technique. Few studies have analysed the outcome of these acetabular re-revisions. Patients and Methods. We analysed 34 consecutive acetabular re-revisions that repeated IBG and a cemented cup in a cohort of 330 acetabular IBG revisions. Fresh-frozen femoral head allografts were morselized manually. All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. The mean follow-up after re-revision was 7.2 years (2–17). Intraoperative bone defect had lessened after the first failed revision. At the first revision there were 14 hips with Paprosky 3A and 20 with Paprosky type 3B. At the re-revision there were 5 hips with Paproky 2B, 21 with Paprosky type 3A and 8 with type 3B. Lateral mesh was used in 19 hips. Results. The mean Harris Hip Score improved from 45.4 (6.7) to 77.1 (15.6) at final follow-up. The radiological analysis showed cup migration in 11 hips. The mean appearance time was 25 months (3–72). Of these, migration in three cups was progressive and painful requiring re-revision. Cup tilt was found in all migrated hips. There were one dislocation requiring a cemented dual mobility cup associated with IBG and one infection resolved with resection-arthroplasty. Survival with further cup revision for aseptic loosening was 80.7% (95% Confidence Interval 57.4–100) at 11 years. In all surviving re-revisions trabecular incorporation was observed without radiolucent lines. Conclusion. Biological repair can be obtained by restoring the bone stock, even after successive acetabular reconstructions using IBG and a cemented cup


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 35 - 35
1 Feb 2020
Takegami Y Habe Y Seki T
Full Access

Introduction. Acetabular component loosening has been one of the factors of revision of total hip arthroplasty (THA). Inadequate mechanical fixation or load transfer may contribute to this loosening process. Several reports showed the load transfer in the acetabulum by metal components. However, there is no report about the influence of the joint surface on the load transfer. We developed a novel acetabular cross-linked polyethylene (CLPE) liner with graft biocompatible phospholipid polymer(MPC) on the surface. The MPC polymer surface had high lubricity and low friction. We hypothesized the acetabular component with MPC polymer surface (MPC-CLPE) may reduce load transfer in the acetabulum compared to that of the by CLPE acetabular component without MPC. Methods. We fixed the three cement cup with MPC-CLPE (Group M; sample No.1–3) and three cement cup with CLPE (Group C; sample No.4–6) placed in the synthetic bone block with bone cement with a 0.10mm thick arc-shaped piezoresistive force sensor, which can measure the dynamic load transfer(Tekscan K-scan 4400; Boston). (Fig 1) A hip simulator (MTS Systems Corp., Eden Prairie, MN) was used for the load transfer test performed according to the ISO Standard 14242-1. Both groups had same inner and outer diameter s of 28 and 50mm, respectively. A Co–Cr alloy femoral head with a diameter of 28 mm (K-MAXs HH-02; KYOCERA Medical Corp.) was used as the femoral component. A biaxial rocking motion was applied to the head/cup interface via an offset bearing assembly with an inclined angle of +20. Both the loading and motion were synchronized at 1 Hz. According to the double-peaked Paul-type physiologic hip load, the applied peak loads were 1793 and 2744 N described in a previous study. The simulator was run 3 cycles. We recorded both the peak of the contact force and the accumulation of the six times load in total. Secondly, we calculated the mean change of the load transfer. We used the Student t-test. P value < 0.05 was used to determine statistical significance. We used EZR for statistical analysis. Results. The mean of total accumulation of the load transfer in the group M is significantly lower than that of in the group C. (7037±508 N vs 11019±1290 N, P<0.0001). The peak of load in the group M was also significantly lower than that in the group C. (1024±166 N vs 1557±395 N) (Fig 2)The mean of the change of the load transfer in the group M is significantly lower than that of in the group C. (2913±112 N vs 4182±306 N) (Fig 3). Conclusion. The acetabular component with MPC surface could reduce and prevent the radical load transfer change toward to the acetabulum compared to CLPE acetabular component without MPC. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 109 - 109
1 May 2012
M. R K. M D. JE H. DA P. AB
Full Access

Introduction. Despite evidence of long term survival of cemented femoral stem prostheses, studies have shown concerns in the longevity of the cemented sockets. This has led to a rise in the use of uncemented and hybrid implants (with uncemented cup and cemented stem) without long term studies to determine evidence for their use. We aimed to assess whether there is any difference in clinical outcome between cemented and non-cemented acetabular fixation in elderly patients. Patients and Methods. Between February 2001 and August 2006 186 patients over 72 years of age were prospectively randomised to receive either a cemented Exeter cup or a HA coated press fit cementless cup. Both groups received a cemented Exeter stem. The patients were assessed pre-operatively and reviewed at 6 weeks, 6 months and yearly in a research clinic, by an independent observer. Outcome measures were the Merle D'Aubigné, Postel, Oxford Hip and Visual analogue pain scores. The implants were also assessed radiographically and all complications were recorded. Results. During the trial 97 patients (mean age 79.13, range 72-90) were randomised to receive a cemented cup (60 right: 37 left) and 89 (mean age 77.65, range 72-95) an uncemented ABG II cup. There was a mean follow-up of 57.6 months (max 9 years) . Statistically there was no significant difference between the two methods of acetabular fixation in outcome measures but radiologically there was a significant difference in wear and loosening (p< 0.001) with cemented cups wearing at a mean of 0.35mm/yr and uncemented cups 0.08mm/yr. Conclusion. Both methods of fixation were demonstrated to have a good outcome with low complication rates. There would appear to be a significant difference in wear rate and osteolysis in this age group between the methods of fixation up to 9 years


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 106 - 106
1 May 2016
Pace F Randelli P Favilla S Brioschi M Maglione D Visentin O Randelli F
Full Access

Introduction. The dual mobility cup was introduced in the 1970s to allow extensive range of motion associated with great stability thanks to double articulation; the first between the head and polyethylene, the second between the polyethylene and the cup. The original plan was to install a stainless-steel uncemented cup coated with a thin layer of alumina and a metal head of 22,2 mm with a polyethylene liner of first generation. Long term follow-up case studies are cited in the literature showing excellent results in reducing dislocations; however wearing and aseptic loosening are noted. The new dual-mobility cups, with reticular polyethylene and titanium and hydroxyapatite coating are proving as reliable as the older ones in terms of stability whilst they appear to be more durable. Furthermore, cemented dual-mobility cups are available, these are the topic of this study. One of the most frequent complications in the major revisions of hip replacement is dislocation. This study summarises our experience gathered in the use of dual-mobility cups during revisions of complex cases (GIR III-IV femoral or acetabular). Materials and Methods. Between July 2014 to March 2015, we have implanted 13 cemented cups with dual-mobility (Avantage® Biomet) each in different patients, who have undergone revision with severe ostheolysis (GIR III-IV femoral or acetabular). The mean age of patients was 71.5 years old (46 to 89). Indications for revisions were: aseptic loosening in 7 patients (two at third surgery), recurrent dislocation in 3 patients, 1 septic loosening, 1 revision after spacer removal e 1 post-traumatic. We used dual-mobility cup in revision surgery when implant stability could have been compromised due to difficult positioning of acetabular component in cases of walls defects or muscolar laxity. The patients have been evaluated clinically and radiographically. Results. In most difficult cases with a severe lack of acetabular walls (9 patients), and thus difficulties in correct cup positioning, we have choosen to implant a cemented cup inside a Burch-schneider® (Zimmer) ring; in those cases where acetabular morphology was still sufficient, a dual-mobility cup was directly cemented to the bone. No dislocations occured during the folllow-up, neither infections, neurological events or DVT. Discussion. Dual mobility cups are often used both as primary implant or as a revision cup. Dislocation rate in primary total hip replacement is comparable to other kind of cup normally used, while in revision cases, the incidence of dislocation decrease from a range of 5–30% to 1,1–5,5%. Our results are not yet comparable to those in literature due to short follow-up, but first impressions are comforting thanks to the lack of dislocation even in really severe cases. Conclusions. The dual-mobility cup in acetabular revisions, is one of the possible choice to keep in mind in more complex cases, where obtaining stability is difficult or impossible using other revision implants. In the literature, the available follow up are not yet long enough to be sure of implant longevity and so it's important to pay attention to use this cup in those patients with long life expectancy


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 331 - 331
1 Dec 2013
Guo S Baskaradas A Holloway I
Full Access

Introduction. Reconstructing acetabular defects in revision hip arthroplasty can be challenging. Small, contained defects can be successfully reconstructed with porous-coated cups without bone grafts. With larger uncontained defects, a cementless cup even with screws, will not engage with sufficient host bone to provide enough stability. Porous titanium augments were originally designed to be used with cementless porous titanium cups, and there is a scarcity of literature on their usage in cemented cups with bone grafting. Methods. We retrospectively reviewed five hips (four patients – 3 women, 1 man; mean age 65 years) in which we reconstructed the acetabulum with a titanium augment (Biomet, IN, USA) as a support for impaction bone grafting and cemented acetabular cups (Figure 1). All defects were classified according to Paprosky classification. Radiographic signs of osseointegration were graded according to Moore grading. Quality of life was measured with the Oxford Hip Score. Results. At a minimum of one year follow-up, none of the patients required any further surgery for aseptic loosening or re-revision. The Oxford Hip Scores generally improved and two of the patients were very satisfied with the overall outcome of the surgery and would have undergone the surgery again for a similar problem. The patient that underwent bilateral acetabular reconstruction during a period one month, scored lowered than the other patients and was less satisfied with the outcome. Radiographs at the latest follow-up revealed incorporation of the augment with mean change in acetabular component inclination of less than 1° and cup migration of less than 5 mm in both horizontal and vertical axes. Discussion. Acetabular reconstruction using porous titanium augments as a support for bone grafting and cemented acetabular cups can be an effective way of managing uncontained structural acetabular defect, with biocompatibility and osteoinducive characteristics. The early results are promising but longer follow-up is required


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 24 - 24
1 Apr 2019
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction. Impaction bone grafting (IBG) is a reliable technique for acetabular revision surgery with large segmental defects. However, bone graft resorption and cup migration are some of the limitations of this tecnique. We assess frequency and outcome of these complications in a large acetabular IBG series. Patients and Methods. We analysed 330 consecutive hips that received acetabular IBG and a cemented cup in revision surgery with large bone defects (Paprosky types 3A and 3B). Fresh-frozen femoral head allograft was morselized manually. The mean follow-up was 17 years (3–26). All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. Changes in different paremeters regarding cup position were assessed pre- and postoperatively and at the follow- up controls. Only variations greater than 5º and 3 mm were considered. Results. The mean Harris Hip Score improved from 48.3+8.5 to 84.6+12.8 at final follow-up. The radiological analysis showed cup migration in 42 hips. The mean appearance time was 4.3 years (range, 1–25). Migration was progressive and painful in 27 hips (67.5%) requiring cup revision. Lateral mesh was more frequently associated with migrated cups (p=0.034). Cup tilt was found in 37 out 42 migrated cups, however cranial migration was more frequent in progressive migrated cups (p=0.02). There were 34 re-revisions, 27 due to aseptic cup loosening, 6 due to dislocation and one due to infection. The survival rate for any cause at 16 years was 81.2% (95% Confidence Interval (CI): 74.0 to 88.4) and for aseptic cup loosening was 83.4% (95% CI: 76.2–90.6). In all surviving hips trabecular incorporation was observed without radiolucent lines. Conclusions. IBG continues to be a reliable technique for large defects in acetabular revision surgery. Bone graft resorption and cup migration was not frequent in this large series and one-third of cases were not progressive. Cup migration was more frequent in cases with a segmental roof defect in which a lateral mesh was used


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 82 - 82
1 May 2012
McCombe P Williams S Spencer L
Full Access

The authors entered patients into a randomised trial to compare the results of the use of cemented and cementless acetabular prostheses between 1993 and 1995. The results of mid-term wear studies at average follow up of eight years were reported in the journal in 2004. We now present long-term results to show the eventual fate of the hip replacements under study. The initial study group of 162 patients was randomly assigned to a modular titanium cup with a polyethylene liner or an all polyethylene cemented cup. All patients received a cemented stem with a 26 mm head and a standardised surgical technique. The polyethylene wear was estimated via head penetration measurement and the mid-term results showed a significantly higher wear rate in the cementless cups compared to the cemented cups (0.15mm/yr vs. 0.07mm/yr p<0.0001). The prediction was that this would lead to a higher rate of aseptic loosening in the cementless group. Patients have now been re-examined at an average of 15 years with the main emphasis on prosthesis survival. Wear studies were also performed. There were exclusions from the initial study because of death and reoperation for reasons other than aseptic loosening. The number of patients in this longer-term study had decreased as a result of death and loss to follow up. Revisions for aseptic loosening did not follow the path as suggested by the mid term wear studies. There were five cup revisions in the cemented group and one cup revision in the cementless group for aseptic loosening. No femoral stem was revised for aseptic loosening. Details of the long-term wear studies will be presented and osteolysis rates and extent documented. Despite the statistically significant difference in wear rates at the mid term, an incorrect prediction of eventual loosening rates was made. The authors believe that there are many factors other than wear rates involved in longevity of fixation. We also believe there are many weaknesses in long term prospective, randomised trials in joint replacement and question whether they are, in fact, level 1 evidence in the age of evidence based medicine


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 191 - 191
1 Mar 2013
Hara K Kaku N Tabata T Tsumura H
Full Access

Introduction. In the case of bipolar hemiarthroplasty, surgeons are often faced with only migration of outer head and severe osteolysis in acetabulum without loosening of femoral component. There has been much debate regarding the merits of removing or retaining stable femoral components in such cases. The purpose of this study was to determine whether revision of an isolated acetabular component without the removal of a well-fixed femoral component [Fig. 1] could be successfully performed. Materials and methods. Thirty-four hips of 33 patients who were followed up for a minimum of 1 year were examined. There were 29 women and 4 men. The average time from primary operation to revision surgery was 12.5 years (range, 0.0 to 17.9 years), and the average follow-up time after revision was 5 years (range, 1.1 to 15.2 years). The average age of the patients at the time of the index revision was sixty-four years (range, thirty-two to seventy-eight years). The reason for acetabular revision was migration of outer head in twenty-eight hips, disassembly of bipolar cup in four hips and recurrent dislocation in two hips. Of the thirty-four femoral components, twenty-seven were cementless and seven were cemented. In nine hips, we performed bone grafting to osteolysis of the proximal femur around the stem. Acetabular components were revised to an acetabular reinforcement ring with a cemented cup in 26 hips, to cementless acetabular components in 8 hips, and to cemented cup in 1 hip. Results. The average Japan Orthopaedic Association hip score improved from 50.7 to 86.1 points after revision surgery. One femoral component (3%) was revised because of periprosthetic fracture, three years after the index acetabular revision and eighteen years after the initial bipolar hemiarthroplasty. Radiographic evaluation of the thirty-three femoral components that were not revised demonstrated no evidence of loosening or subsidence. There were no dislocation or deep infection. Thirty-three (97%) of the acetabular components were judged to be stable at the final follow-up. A nonprogressive radiolucent line of less than 2 mm was observed in one case. Conclusion. We recommend that isolated acetabular revision be considered in cases of failed bipolar hemiarthroplasty with a well-fixed femoral component


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 32 - 32
1 Jun 2018
Mullaji A
Full Access

Protrusio acetabuli can be either primary or secondary. Primary or idiopathic protrusio is a rare condition of unknown etiology. Secondary protrusio may be associated with rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteomalacia, trauma and Paget's disease. Challenges in surgery include: lack of bone stock, deficient medial support to the cup, difficulty in dislocating the femoral head, and medialization of the hip joint center. Several surgical techniques have been described: use of cement alone without bone graft; morselised impacted autograft or allograft with a cemented cup; metal cages, reinforcement rings, and solid grafts. We describe our technique of impaction grafting using autologous bone and a cementless porous-coated hemispherical cup without the use of acetabular rings or cages in patients with an average age of 46 years. Protrusion was graded depending on distance of medial wall from Kohler's line as mild (1–5 mm medial), moderate (6–15 mm medial) and severe if it was more than 15 mm medial to the Kohler's line. All patients were operated in the lateral position using a modified Hardinge's anterolateral approach. Adductor tenotomy may be required in cases of severely stiff hips. After careful dislocation of the femoral head, it was sectioned in situ into slivers to facilitate obtaining the graft. The periphery was reamed and care was taken to preserve the membrane lining the floor of the defect. Morselised graft was impacted with hemispherical impactors and the trial cup 1–2 mm larger than the last reamer placed in the desired position. The final socket was then inserted. Femoral preparation was performed in routine fashion. The mean pre-operative Harris Hip Score of 52 improved to 85 points at a mean follow up of 4 years. The average acetabular inclination angle was 42 degrees. Our results have shown incorporation of the graft in all cases. There was no evidence of progression of the protrusio or cup loosening in any of the cases. Thus far, our hips have not shown osteolytic lesions. The technique described is a satisfactory biological solution of restoring bone stock particularly in young and middle-aged patients


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 16 - 16
1 Jun 2018
Berry D
Full Access

The Failed Femoral Neck Fracture. For the young patient: Attempt to preserve patient's own femoral head. Clinical results reasonably good even if there are patches of avascular necrosis. Preferred methods of salvage: valgus-producing intertrochanteric femoral osteotomy: puts the nonunion under compression. Other treatment option: Meyer's vascularised pedicle graft. For the older patient: Most reliable treatment is prosthetic replacement. Decision to use hemiarthroplasty (such as bipolar) or THA based on quality of articular cartilage, perceived risk of instability problem. In most patients THA provides higher likelihood of excellent pain relief. Specific technical issues: (1) hardware removal: usually remove after hip has first been dislocated (to reduce risk of femur fracture); (2) Hip stability: consider methods to reduce dislocation risk: larger diameter heads/dual mobility/anteriorly-based approaches; (3) Acetabular bone quality: poor because it is not sclerotic from previous arthritis; caution when impacting a pressfit cup; low threshold to augment fixation with screws; don't overdo reaming; just expose the bleeding subchondral bone. A reasonable alternative is a cemented cup. The Failed Intertrochanteric Hip Fracture. For the young patient: Attempt to salvage hip joint with nonunion takedown, autogenous bone grafting and internal fixation. For the older patient: Decision to preserve patient's own hip with internal fixation versus salvage with hip arthroplasty should be individualised based on patient circumstances, fracture pattern, bone quality. THA is an effective salvage procedure for this problem in older patients. If prosthetic replacement is chosen special considerations include:. THA vs. hemiarthroplasty: hemiarthroplasty better stability; THA more reliable pain relief. Removal of hardware: be prepared to remove broken screws in intramedullary canal. Management of bone loss: bone loss to level of lesser trochanter common. Often requires a calcar replacement implant. Proximal calcar build-up size dictated by bone loss. Length of stem: desirable to bypass screw holes from previous fixation, if possible. Stem fixation: cemented or uncemented fixation depending on surgeon preference, bone quality. If uncemented, consider diaphyseal fixation. Greater trochanter: often a separate piece, be prepared to fix with wires or cable grip. Residual trochanteric healing, hardware problems not rare after THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 60 - 60
1 Dec 2016
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs:. (A). Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture. This reconstruction is used in young patients where restoration of bone stock is important. (B). Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C). Cup Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 102 - 102
1 Nov 2016
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture. This reconstruction is used in young patients where restoration of bone stock is important. Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. Cup Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 101 - 101
1 Aug 2017
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. (A). Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture, This reconstruction is used in young patients where restoration of bone stock is important. (B). Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C). Cup-Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup-cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity. Acetabular bone loss and presence of pelvic discontinuity were assessed according to the Gross classification. Sixty-seven cup-cage procedures with an average follow-up of 74 months (range, 24–135 months; SD, 34.3) months were identified; 26 of 67 (39%) were Gross Type IV and 41 of 67 (61%) were Gross Type V (pelvic discontinuity). Failure was defined as revision surgery for any cause, including infection. The 5-year Kaplan-Meier survival rate with revision for any cause representing failure was 93% (95% confidence interval, 83.1–97.4), and the 10-year survival rate was 85% (95% CI, 67.2–93.8). The Merle d'Aubigné-Postel score improved significantly from a mean of 6 pre-operatively to 13 post-operatively (p < 0.001). Four cup-cage constructs had non-progressive radiological migration of the ischial flange and they remain stable


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 58 - 58
1 Apr 2017
Parvizi J
Full Access

Revision of total hip arthroplasty (THA) is being performed with increasing frequency. However, outcomes of repeated revisions have been rarely reported in the literature, especially for severe defects. Cup revision can be a highly complex operation depending on the bone defect. In acetabular defects like Paprosky types 1 and 2 porous cementless cups maybe fixed with screws give good results. Modern trabecular metal designs improve these good results. Allografts are useful for filling cavitary defects. In acetabular defects Paprosky types 3A and 3B, impacted morselised allografts with a cemented cup technique produce good results. Difficult cases with pelvic discontinuity require reconstruction of the acetabulum with acetabular plates or large cup-cages to solve these difficult problems. However, there is still no consensus regarding the best option for reconstructing hips with bone loss. Although the introduction of ultraporous metals has significantly increased the surgeon's ability to reconstruct severely compromised hips, there remain some that cannot be managed readily using cups, augments, or cages. In such situations custom acetabular components may be required. Individual implants represent yet another tool for the reconstructive surgeon. These devices can be helpful in situations of catastrophic bone loss. Ensuring long-term outcome mechanical stability has a greater impact than restoring an ideal center of rotation. We have done so far 15 3D Printed Individual Implants. All of them where Paprosky Type 3B defects, 10 with a additional pelvis discontinuity. The mean follow-up is 18 months. All implanted devices are still in place, no infection, no loosening. However, despite our consecutive case series, there are no mid- to long-term results available so far. Re-revision for failed revision THA acetabular components is a technically very challenging condition. The 3D Printed Individual Implants have a lot of advantages, like excellent surgical planning and a very simple technique (operative time, blood loss, instruments). They are a very stable construct for extensive acetabular defects and pelvic discontinuity


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 82 - 82
1 Dec 2016
Greidanus N Garbuz D Konan S Duncan C Masri B
Full Access

Revision surgery for pelvic discontinuity in the presence of bone loss is challenging. The cup-cage reconstruction option has become popular for the management of pelvic discontinuity in the recent years. The aim of this study was to review the clinical, radiological and patient reported outcomes with the use of cup cage construct for pelvic discontinuity at our institution. Twenty-seven patients (27 cup-cage reconstructions) were identified at median 6-year (minimum 2 year, maximum 10 years) follow up. Eight were female patients. The median age was 77 years [mean 72, range 37–90, SD 13.6]. There were 5 deaths and 2 were lost to follow up. Two patients were converted to excision arthroplasty; one for infection and one for failure of the construct. A further 3 patients required revision for instability but the cup cage construct was not revised (2 revisions of cemented cups to a constrained cup and one revision of proximal modular component of the femoral prosthesis). Revision of the cup cage construct was not necessary in any of these cases. We noted excellent pain relief (mean WOMAC pain 85.6) and good functional outcome (mean WOMAC function 78.2, mean UCLA 5, mean OHS 78.6). Patient satisfaction with regards pain relief; function and return to activities were noted to be excellent. Radiological changes were noted in further 4 patients (cup migration in one case; fracture of ischial spike in one case and breakage of the cage screws in 2 patients). No migration of the construct was noted in any of the cases. In conclusion, the cup cage construct is an excellent method of dealing with complex pelvic discontinuity. Our study suggests a low failure rate; high patient satisfaction and pain relief and moderate functional outcome at median 6 year follow up


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 61 - 61
1 Apr 2017
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. (A) Conventional cage ± structural or morselised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture. This reconstruction is used in young patients where restoration of bone stock is important. (B) Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C) Cup Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity. Acetabular bone loss and presence of pelvic discontinuity were assessed according to the Gross classification. Sixty-seven cup-cage procedures with an average follow-up of 74 months (range, 24–135 months; SD, 34.3) months were identified; 26 of 67 (39%) were Gross Type IV and 41 of 67 (61%) were Gross Type V (pelvic discontinuity). Failure was defined as revision surgery for any cause, including infection. The 5-year Kaplan-Meier survival rate with revision for any cause representing failure was 93% (95% confidence interval, 83.1–97.4), and the 10-year survival rate was 85% (95% CI, 67.2–93.8). The Merle d'Aubigné-Postel score improved significantly from a mean of 6 pre-operatively to 13 post-operatively (p < 0.001). Four cup-cage constructs had non-progressive radiological migration of the ischial flange and they remain stable


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 106 - 106
1 Nov 2015
Gross A
Full Access

Acetabular cages are necessary when an uncemented or cemented cup cannot be stabilised at the correct anatomic level. Impaction grafting with mesh for containment of bone graft is an alternative for some cases in centers that specialise in this technique. At our center we use three types of cage constructs –. (A) Conventional cage ± structural or morsellised bone grafting. This construct is used where there is no significant bleeding host bone. This construct is susceptible to cage fatigue and fracture. This reconstruction is used in young patients where restoration of bone stock is important. (B) Conventional cage in combination with a porous augment where contact with bleeding host bone can be with the ilium and then by the use of cement that construct can be unified. The augment provides contact with bleeding host bone and if and when ingrowth occurs, the stress is taken off the cage. (C) Cup Cage Construct – in this construct there must be enough bleeding host bone to stabilise the ultra-porous cup which functions like a structural allograft supporting and eventually taking the stress off the cage. This construct is ideal for pelvic discontinuity with the ultra-porous cup, i.e., bridging and to some degree distracting the discontinuity. If, however, the ultra-porous cup cannot be stabilised against some bleeding host bone, then a conventional stand-alone cage must be used. In our center the cup cage reconstruction is our most common technique where a cage is used, especially if there is a pelvic discontinuity