Introduction. Cementation of a new liner into an existing well-fixed acetabular component is common during revision total hip arthroplasties (THAs) for many indications, but most commonly for lack of a modern compatible crosslinked polyethylene liner. However, little is known about the long-term durability of this strategy. The purpose of this study was to evaluate the long-term implant survivorship, risk of complications, clinical outcomes, and radiographic results of cementing a new highly cross-linked polyethylene (HXLPE) liner into a well-fixed acetabular component. Methods. We retrospectively identified 326 revision THAs where a non-constrained HXLPE
Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).Aims
Methods
The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.Aims
Methods
Aims. Reconstruction of the acetabulum after failed total hip arthroplasty
(THA) can be a surgical challenge in the presence of severe bone
loss. We report the long-term survival of a porous tantalum revision
acetabular component, its radiological appearance and quality of
life outcomes. Patients and Methods. We reviewed the results of 46 patients who had undergone revision
of a failed acetabular component with a Paprosky II or III bone
defect and reconstruction with a hemispherical, tantalum acetabular
component, supplementary screws and a
Highly porous tantalum cups have been used in complex acetabular revisions for nearly 20 years but reports of long term results are limited. This study was designed to report ten year results of revision using a single porous tantalum cup design with special attention to re-operation for any reason, all-cause revision, and revision for aseptic loosening. Retrospective review of all revision THA cases performed from 1999–2006 using a highly porous tantalum acetabular component design with multiple screw holes and a
One-stage exchange for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) is gaining popularity. The outcome for a repeat one-stage revision THA after a failed one-stage exchange for infection remains unknown. The aim of this study was to report the infection-free and all-cause revision-free survival of repeat one-stage exchange, and to investigate the association between the Musculoskeletal Infection Society (MSIS) staging system and further infection-related failure. We retrospectively reviewed all repeat one-stage revision THAs performed after failed one-stage exchange THA for infection between January 2008 and December 2016. The final cohort included 32 patients. The mean follow-up after repeat one-stage exchange was 5.3 years (1.2 to 13.0). The patients with a further infection-related failure and/or all-cause revision were reported, and Kaplan-Meier survival for these endpoints determined. Patients were categorized according to the MSIS system, and its association with further infection was analyzed.Aims
Methods
We investigated the long-term performance of the Tripolar Trident acetabular component used for recurrent dislocation in revision total hip arthroplasty. We assessed: 1) rate of re-dislocation; 2) incidence of complications requiring re-operation; and 3) Western Ontario and McMaster Universities osteoarthritis index (WOMAC) pain and functional scores. We retrospectively identified 111 patients who had 113 revision tripolar constrained liners between 1994 and 2008. All patients had undergone revision hip arthroplasty before the constrained liner was used: 13 after the first revision, 17 after the second, 38 after the third, and 45 after more than three revisions. A total of 75 hips (73 patients) were treated with Tripolar liners due to recurrent instability with abductor deficiency, In addition, six patients had associated cerebral palsy, four had poliomyelitis, two had multiple sclerosis, two had spina bifida, two had spondyloepiphyseal dysplasia, one had previous reversal of an arthrodesis, and 21 had proximal femoral replacements. The mean age of patients at time of Tripolar insertions was 72 years (53 to 89); there were 69 female patients (two bilateral) and 42 male patients. All patients were followed up for a mean of 15 years (10 to 24). Overall, 55 patients (57 hips) died between April 2011 and February 2018, at a mean of 167 months (122 to 217) following their tripolar liner implantation. We extracted demographics, implant data, rate of dislocations, and incidence of other complications.Aims
Patients and Methods
The stability of cementless acetabular components is an important
factor for surgical planning in the treatment of patients with pelvic
osteolysis after total hip arthroplasty (THA). However, the methods
for determining the stability of the acetabular component from pre-operative
radiographs remain controversial. Our aim was to develop a scoring
system to help in the assessment of the stability of the acetabular
component under these circumstances. The new scoring system is based on the mechanism of failure of
these components and the location of the osteolytic lesion, according
to the DeLee and Charnley classification. Each zone is evaluated
and scored separately. The sum of the individual scores from the
three zones is reported as a total score with a maximum of 10 points.
The study involved 96 revision procedures which were undertaken
for wear or osteolysis in 91 patients between July 2002 and December
2012. Pre-operative anteroposterior pelvic radiographs and Judet
views were reviewed. The stability of the acetabular component was
confirmed intra-operatively.Aims
Patients and Methods
Acetabular bone loss is a challenging problem
facing the revision total hip replacement surgeon. Reconstruction
of the acetabulum depends on the presence of anterosuperior and
posteroinferior pelvic column support for component fixation and
stability. The Paprosky classification is most commonly used when
determining the location and degree of acetabular bone loss. Augments
serve the function of either providing primary construct stability
or supplementary fixation. When a pelvic discontinuity is encountered we advocate the use
of an acetabular distraction technique with a jumbo cup and modular
porous metal acetabular augments for the treatment of severe acetabular
bone loss and associated chronic pelvic discontinuity. Cite this article:
Trabecular metal (TM) augments are a relatively
new option for reconstructing segmental bone loss during acetabular
revision. We studied 34 failed hip replacements in 34 patients that
were revised between October 2003 and March 2010 using a TM acetabular
shell and one or two augments. The mean age of the patients at the
time of surgery was 69.3 years (46 to 86) and the mean follow-up
was 64.5 months (27 to 107). In all, 18 patients had a minor column
defect, 14 had a major column defect, and two were associated with
pelvic discontinuity. The hip centre of rotation was restored in
27 patients (79.4%). The Oxford hip score increased from a mean
of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to
47) at the final follow-up. There were three aseptic loosenings
of the construct, two of them in the patients with pelvic discontinuity.
One septic loosening also occurred in a patient who had previously
had an infected hip replacement. The augments remained stable in
two of the failed hips. Whenever there was a loose acetabular component
in contact with a stable augment, progressive metal debris shedding
was evident on the serial radiographs. Complications included another
deep infection treated without revision surgery. Good clinical and
radiological results can be expected for bone-deficient acetabula
treated by a TM cup and augment, but for pelvic discontinuities
this might not be a reliable option. Cite this article:
The use of ilioischial cage reconstruction for
pelvic discontinuity has been replaced by the Trabecular Metal (Zimmer,
Warsaw, Indiana) cup-cage technique in our institution, due to the
unsatisfactory outcome of using a cage alone in this situation.
We report the outcome of 26 pelvic discontinuities in 24 patients
(20 women and four men, mean age 65 years (44 to 84)) treated by
the cup-cage technique at a mean follow-up of 82 months (12 to 113)
and compared them with a series of 19 pelvic discontinuities in
19 patients (18 women and one man, mean age 70 years (42 to 86))
treated with a cage at a mean follow-up of 69 months (1 to 170).
The clinical and radiological outcomes as well as the survivorship
of the groups were compared. In all, four of the cup-cage group
(15%) and 13 (68%) of the cage group failed due to septic or aseptic
loosening. The seven-year survivorship was 87.2% (95% confidence interval
(CI) 71 to 103) for the cup-cage group and 49.9% (95% CI 15 to 84)
for the cage-alone group (p = 0.009). There were four major complications
in the cup-cage group and nine in the cage group. Radiological union
of the discontinuity was found in all successful cases in the cup-cage
group and three of the successful cage cases. Three hips in the
cup-cage group developed early radiological migration of the components,
which stabilised with a successful outcome. Cup-cage reconstruction is a reliable technique for treating
pelvic discontinuity in mid-term follow-up and is preferred to ilioischial
cage reconstruction. If the continuity of the bone graft at the
discontinuity site is not disrupted, early migration of the components
does not necessarily result in failure. Cite this article:
The conventional method for reconstructing acetabular
bone loss at revision surgery includes using structural bone allograft.
The disadvantages of this technique promoted the advent of metallic
but biocompatible porous implants to fill bone defects enhancing
initial and long-term stability of the acetabular component. This
paper presents the indications, surgical technique and the outcome
of using porous metal acetabular augments for reconstructing acetabular
defects. Cite this article:
Polyethylene liners of modular acetabular components wear sometimes need to be replaced, despite the metal shell being well fixed. Replacing the liner is a relatively simple procedure, but very little is known of the outcome of revision. We prospectively followed up 1126 Harris-Galante I metal-backed, uncemented components for between nine and 19 years. We found 38 (3.4%) liners of 1126 acetabular components wore and required revision. These revisions were then followed up for a mean of 4.8 years. The rate of dislocation was 28.9%. Nine of the dislocations occurred once and two were recurrent. The overall secondary revision rate was three of 38 total hip replacements (7.9%) at a mean follow-up of 4.8 years. This gives a 92.1% survivorship (35 of 38) at under five years. In isolated revision of a liner, we had a complication rate of 23% (three of 13). In revision of a liner combined with revision of the femoral stem, there was a complication rate of 48% (12 of 25). We discuss possible reasons for the high dislocation rates. Leaving the well-fixed acetabular shell