Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:

Abstract. Introduction. Cementless fixation of Oxford Unicompartmental Knee Replacements (UKRs) is an alternative to cemented fixation, however, it is unknown whether cementless fixation is as good long-term. This study aimed to compare primary and long-term fixation of cemented and cementless Oxford UKRs using radiostereometric analysis (RSA). Methodology. Twenty-nine patients were randomised to receive cemented or cementless Oxford UKRs and followed for ten years. Differences in primary fixation and long-term fixation of the tibial components (inferred from 0/3/6-month and 6-month/1-year/2-year/5-year/10-year migration, respectively) were analysed using RSA and radiolucencies were assessed on radiographs. Migration rates were determined by linear regression and clinical outcomes measured using the Oxford Knee Score (OKS). Results. Preliminary analysis of Maximum Total Point Motion (MTPM) indicated cementless tibial components undergo significantly more migration than cemented components during the first 6 months (1.6mm/year, SD=0.92 versus 1.3mm/year, SD=1.1, p<0.001). Cementless migration was predominantly subsidence inferiorly (Mean=0.51mm/year, SD=0.29, p<0.001) and posteriorly (0.13mm/year, SD=0.21, p=0.03). Contrastingly, from 6 months to 10 years cemented components migrated significantly (MTPM=0.039mm/year, SD=0.11, p=0.04) whereas cementless components did not (MTPM=0.002mm/year, SD=0.02, p=0.744). Radiolucent lines occurred more frequently below cemented (10/13) than cementless (4/16) tibial components, but radiolucencies did not correlate with differences in migration or OKS. There was no significant difference in OKS between cemented and cementless. Conclusion. These results suggest that cementless tibial components migrate more than cemented before achieving primary fixation. However, long-term fixation of cementless tibial components appears to be as good, if not better, than cemented with the benefit of fewer radiolucent lines


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 181 - 187
1 Feb 2013
Liddle AD Pandit H O’Brien S Doran E Penny ID Hooper GJ Burn PJ Dodd CAF Beverland DE Maxwell AR Murray DW

The Cementless Oxford Unicompartmental Knee Replacement (OUKR) was developed to address problems related to cementation, and has been demonstrated in a randomised study to have similar clinical outcomes with fewer radiolucencies than observed with the cemented device. However, before its widespread use it is necessary to clarify contraindications and assess the complications. This requires a larger study than any previously published. We present a prospective multicentre series of 1000 cementless OUKRs in 881 patients at a minimum follow-up of one year. All patients had radiological assessment aligned to the bone–implant interfaces and clinical scores. Analysis was performed at a mean of 38.2 months (19 to 88) following surgery. A total of 17 patients died (comprising 19 knees (1.9%)), none as a result of surgery; there were no tibial or femoral loosenings. A total of 19 knees (1.9%) had significant implant-related complications or required revision. Implant survival at six years was 97.2%, and there was a partial radiolucency at the bone–implant interface in 72 knees (8.9%), with no complete radiolucencies. There was no significant increase in complication rate compared with cemented fixation (p = 0.87), and no specific contraindications to cementless fixation were identified. Cementless OUKR appears to be safe and reproducible in patients with end-stage anteromedial osteoarthritis of the knee, with radiological evidence of improved fixation compared with previous reports using cemented fixation. Cite this article: Bone Joint J 2013;95-B:181–7


Bone & Joint Open
Vol. 5, Issue 5 | Pages 401 - 410
20 May 2024
Bayoumi T Burger JA van der List JP Sierevelt IN Spekenbrink-Spooren A Pearle AD Kerkhoffs GMMJ Zuiderbaan HA

Aims. The primary objective of this registry-based study was to compare patient-reported outcomes of cementless and cemented medial unicompartmental knee arthroplasty (UKA) during the first postoperative year. The secondary objective was to assess one- and three-year implant survival of both fixation techniques. Methods. We analyzed 10,862 cementless and 7,917 cemented UKA cases enrolled in the Dutch Arthroplasty Registry, operated between 2017 and 2021. Pre- to postoperative change in outcomes at six and 12 months’ follow-up were compared using mixed model analyses. Kaplan-Meier and Cox regression models were applied to quantify differences in implant survival. Adjustments were made for patient-specific variables and annual hospital volume. Results. Change from baseline in the Oxford Knee Score (OKS) and activity-related pain was comparable between groups. Adjustment for covariates demonstrated a minimally greater decrease in rest-related pain in the cemented group (β = -0.09 (95% confidence interval (CI) -0.16 to -0.01)). Cementless fixation was associated with a higher probability of achieving an excellent OKS outcome (> 41 points) (adjusted odds ratio 1.2 (95% CI 1.1 to 1.3)). The likelihood of one-year implant survival was greater for cemented implants (adjusted hazard ratio (HR) 1.35 (95% CI 1.01 to 1.71)), with higher revision rates for periprosthetic fractures of cementless implants. During two to three years’ follow-up, the likelihood of implant survival was non-significantly greater for cementless UKA (adjusted HR 0.64 (95% CI 0.40 to 1.04)), primarily due to increased revision rates for tibial loosening of cemented implants. Conclusion. Cementless and cemented medial UKA led to comparable improvement in physical function and pain reduction during the initial postoperative year, albeit with a greater likelihood of achieving excellent OKS outcomes after cementless UKA. Anticipated differences in early physical function and pain should not be a decisive factor in the choice of fixation technique. However, surgeons should consider the differences in short- and long-term implant survival when deciding which implant to use. Cite this article: Bone Jt Open 2024;5(5):401–410


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 31 - 31
1 Mar 2012
Kendrick B Pandit H Jenkins C Beard D Gill H Price A Dodd C Murray D
Full Access

Purpose of Study. To assess the incidence of radiolucency in cemented and cementless Oxford unicompartmental knee replacement at two years. Introduction. Most unicompartmental knee replacements (UKRs) employ cement for fixation of the prosthetic components. The information in the literature about the relative merits of cemented and cementless UKR is contradictory, with some favouring cementless fixation and others favouring cemented fixation. In addition, there is concern about the radiolucency that frequently develops beneath the tibial component with cemented fixation. The exact cause of the occurrence of radiolucency is unknown but it has been hypothesised that it may suggest suboptimal fixation. Method. Following ethical approval, 62 patients with medial OA were randomised to receive either cemented (n=32) or cementless components (n=30). All patients underwent an identical surgical procedure with either a cemented or cementless Oxford UKR. Patients were assessed clinically by a research physiotherapist and radiologically using screened radiographs. Thirty-eight patients from the trial with follow up of at least two years and well aligned radiographs were identified (cemented n=16, cementless n=22). Results. The patients in the two groups were well matched. Radiological and clinical assessment was at a mean of 2.25 years. There was no significant difference in the clinical scores between the two groups. The median OKS for the cemented group was 43 and for the cementless group was 42.5. Narrow radiolucent lines were seen at the bone-implant interfaces of 63% of the cemented tibial components; partial in 38% and complete in 25%. In the cementless implants, partial radiolucencies were seen in 4.5% and complete radiolucencies in none. The differences are statistically highly significant (p< 0.0001). The lack of radiolucency beneath the cementless tibial components implies satisfactory bone ingrowth and hence fixation. Conclusions. At 2 years the cementless components are well fixed and have similar clinical results to the cemented


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 17 - 17
7 Aug 2023
Arthur L Ghosh P Mohammad H Campi S Murray D Mellon S
Full Access

Abstract

Introduction

The Oxford Unicompartmental Knee Replacement's (OUKR's) fully-congruent design minimises polyethylene wear. Consequently, wear is a rare failure mechanism. Phase-3 OUKR linear wear at 5 years was higher than previous OUKR phases, but very low compared to fixed-bearing UKRs. This study aimed to measure OUKR bearing wear at 10 years and investigate factors that may affect wear.

Methodology

Bearing thickness for 39 OUKRs from a randomised study was calculated using radiostereometric analysis at regular intervals up to 10 years. Data for 39 and 29 OUKRs was available at 5 and 10 years, respectively. As creep occurs early, wear rate was calculated using linear regression between 6 months and 10 years. Relationships between wear and patient factors, fixation method, Oxford Knee Score (OKS), bearing position, and component position were analysed.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 82 - 84
1 Nov 2012
Ranawat CS Meftah M Windsor EN Ranawat AS

There has been a recent increase in interest for non-cemented fixation in total knee arthroplasty (TKA), however the superiority of cement fixation is an ongoing debate.

Whereas the results based on Level III and IV evidence show similar survivorship rates between the two types of fixation, Level I and II evidence strongly support cemented fixation. United Kingdom, Australia, Sweden, and New Zealand registry data show lower failure rates and greater usage of cemented than non-cemented fixation. Case series studies have also indicated greater functional outcomes and lower revision rates among cemented TKAs. Non-cemented fixation involves more patellofemoral complications, including increased susceptibility to wear due to a thinner polyethylene bearing on the cementless metal-backed component. The combination of results from registry data, prospective randomised studies, and meta-analyses support the current superiority of cemented fixation in TKAs.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 85 - 89
1 Nov 2012
Drexler M Dwyer T Marmor M Abolghasemian M Sternheim A Cameron HU

In this study we present our experience with four generations of uncemented total knee arthroplasty (TKA) from Smith & Nephew: Tricon M, Tricon LS, Tricon II and Profix, focusing on the failure rates correlating with each design change. Beginning in 1984, 380 Tricon M, 435 Tricon LS, 305 Tricon 2 and 588 Profix were implanted by the senior author. The rate of revision for loosening was 1.1% for the Tricon M, 1.1% for the Tricon LS, 0.5% for the Tricon 2 with a HA coated tibial component, and 1.3% for the Profix TKA. No loosening of the femoral component was seen with the Tricon M, Tricon LS or Tricon 2, with no loosening seen of the tibial component with the Profix TKA. Regarding revision for wear, the incidence was 13.1% for the Tricon M, 6.6% for the Tricon LS, 2.3% for the Tricon 2, and 0% for the Profix. These results demonstrate that improvements in the design of uncemented components, including increased polyethylene thickness, improved polyethylene quality, and the introduction of hydroxyapatite coating, has improved the outcomes of uncemented TKA over time.


Bone & Joint Open
Vol. 2, Issue 1 | Pages 48 - 57
19 Jan 2021
Asokan A Plastow R Kayani B Radhakrishnan GT Magan AA Haddad FS

Cementless knee arthroplasty has seen a recent resurgence in popularity due to conceptual advantages, including improved osseointegration providing biological fixation, increased surgical efficiency, and reduced systemic complications associated with cement impaction and wear from cement debris. Increasingly younger and higher demand patients are requiring knee arthroplasty, and as such, there is optimism cementless fixation may improve implant survivorship and functional outcomes. Compared to cemented implants, the National Joint Registry (NJR) currently reports higher revision rates in cementless total knee arthroplasty (TKA), but lower in unicompartmental knee arthroplasty (UKA). However, recent studies are beginning to show excellent outcomes with cementless implants, particularly with UKA which has shown superior performance to cemented varieties. Cementless TKA has yet to show long-term benefit, and currently performs equivalently to cemented in short- to medium-term cohort studies. However, with novel concepts including 3D-printed coatings, robotic-assisted surgery, radiostereometric analysis, and kinematic or functional knee alignment principles, it is hoped they may help improve the outcomes of cementless TKA in the long-term. In addition, though cementless implant costs remain higher due to novel implant coatings, it is speculated cost-effectiveness can be achieved through greater surgical efficiency and potential reduction in revision costs. There is paucity of level one data on long-term outcomes between fixation methods and the cost-effectiveness of modern cementless knee arthroplasty. This review explores recent literature on cementless knee arthroplasty, with regards to clinical outcomes, implant survivorship, complications, and cost-effectiveness; providing a concise update to assist clinicians on implant choice. Cite this article: Bone Jt Open 2021;2(1):48–57


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 32 - 37
1 Jun 2021
Restrepo S Smith EB Hozack WJ

Aims. Cementless total knee arthroplasty (TKA) offers the potential for strong biological fixation compared with cemented TKA where fixation is achieved by the mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs, which have used additive manufacturing (3D printing). The aim of this study was to present mid-term clinical outcomes and implant survivorship of the cementless Stryker Triathlon Tritanium TKA. Methods. This was a single institution registry review of prospectively gathered data from 341 cementless Triathlon Tritanium TKAs at four to 6.8 years follow-up. Outcomes were determined by comparing pre- and postoperative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores, and pre- and postoperative 12-item Veterans RAND/Short Form Health Survey (VR/SF-12) scores. Aseptic loosening and revision for any reason were the endpoints which were used to determine survivorship at five years. Results. At mid-term follow-up, the mean KOOS JR score improved significantly from 33.14 (0 t0 85, standard deviation (SD) 21.88) preoperatively to 84.12 (15.94 to 100, SD 20.51) postoperatively (p < 0.001), the mean VR/SF-12 scores improved significantly from physical health (PH), 31.21 (SD 5.32; 23.99 to 56.77) preoperatively to 42.62 (SD 10.72; 19.38 to 56.82) postoperatively (p < 0.001) and the mental health (MH), 38.15 (SD 8.17; 19.06 to 60.75) preoperatively to 55.09 (SD 9.64; 19.06 to 66.98) postoperatively (p < 0.001). A total of 11 revisions were undertaken, with an overall revision rate of 2.94%, including five for periprosthetic joint infection (1.34%), three for loosening (0.80%), two for instability (0.53%), and one for pain (0.27%). The overall survivorship was 97.06% and survivorship for aseptic loosening as the endpoint was 98.40%, with a 99.5% survivorship of the 3D-printed tibial component. Conclusion. This 3D-printed cementless total knee system shows excellent survivorship at mid-term follow-up. This design and the ability to obtain cementless fixation offers promise for excellent long-term durability. Cite this article: Bone Joint J 2021;103-B(6 Supple A):32–37


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 30 - 30
1 Jul 2022
Middleton R Jackson W Alvand A Bottomley N Price A
Full Access

Abstract. Background. Since 2012 we have routinely used the cementless Oxford medial unicompartmental knee arthroplasty (mUKA), with microplasty instrumentation, in patients with anteromedial osteoarthritis (AMOA) meeting modern indications. We report the 10-year survival of 1000 mUKA with minimum 4-year follow-up. Methods. National Joint Registry (NJR) surgeon reports were interrogated for each senior author to identify the first 1,000 mUKAs performed for osteoarthritis. A minimum of 4 years follow-up was required. There was no loss to follow-up. The NJR status of each knee was established. For each mUKA revision the indication and mechanism of failure was determined using local patient records. The 10-year implant survival was calculated using life-table analysis. Results. The 1,000 mUKA cohort represented 55% of all primary knee replacements in the period, with an average age of 67.7 years and a 54%/46% male/female split. There were 17 revisions (11 for arthritis progression, 4 infections, 1 dislocation and 1 aseptic loosening). The 10-year survival was 98% (44 at risk in 10th year). One patient sustained a periprosthetic fracture at 3 weeks, treated with buttress plate fixation. Discussion. This is the first detailed series reporting the long-term outcome of the cementless Oxford mUKA implanted using microplasty instrumentation. There was a low failure rate, with only one revision for aseptic loosening. Lateral progression was the commonest cause for revision, with an incidence of 1%. This report provides evidence that the combination of evidence-based indications, well-designed instrumentation and cementless fixation can provide excellent long-term survival for the Oxford mUKA in treating AMOA


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 861 - 867
1 Jul 2020
Hiranaka T Yoshikawa R Yoshida K Michishita K Nishimura T Nitta S Takashiba K Murray D

Aims. Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless tibial components could safely be used in Japanese patients based on the size and shape of the tibia. Methods. The study involved 212 cementless Oxford UKAs which were undertaken in 174 patients in six hospitals. The medial eminence line (MEL), which is a line parallel to the tibial axis passing through the tip of medial intercondylar eminence, was drawn on preoperative radiographs. Knees were classified as having a very overhanging medial tibial condyle if this line passed medial to the medial tibial cortex. They were also classified as very small if a size A/AA tibial component was used. Results. The overall rate of fracture was 8% (17 out of 212 knees). The rate was higher in knees with very overhanging condyles (Odds ratio (OR) 13; p < 0.001) and with very small components (OR 7; p < 0.001). The OR was 21 (p < 0.001) in those with both very overhanging condyles and very small components. In all, 69% of knees (147) had neither very overhanging nor very small components, and the fracture rate in these patients was 1.4% (2 out of 147 knees). Males had a significantly reduced risk of fracture (OR 0.13; p = 0.002), probably because no males required very small components and females were more likely to have very overhanging condyles (OR 3; p = 0.013). 31% of knees (66) were in males and in these the rate of fracture was 1.5% (1 out of 66 knees). Conclusion. The rate of tibial plateau fracture in Japanese patients undergoing cementless UKA is high. We recommend that cemented tibial fixation should be used in Japanese patients who require very small components or have very overhanging condyles, as identified from preoperative radiographs. In the remaining 69% of knees cementless fixation can be used. This approach should result in a low rate of fracture. Cite this article: Bone Joint J 2020;102-B(7):861–867


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1016 - 1024
1 Aug 2020
Hasan S van Hamersveld KT Marang-van de Mheen PJ Kaptein BL Nelissen RGHH Toksvig-Larsen S

Aims. Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening. Methods. A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements. Results. The mean maximum total point motion (MTPM) at three, 12, and 24 months was 0.33 mm (95% confidence interval (CI) 0.25 to 0.42), 0.42 mm (95% CI 0.33 to 0.51), and 0.47 mm (95% CI 0.38 to 0.57) respectively in the cemented group, versus 0.52 mm (95% CI 0.43 to 0.63), 0.62 mm (95% CI 0.52 to 0.73), and 0.64 mm (95% CI 0.53 to 0.75) in the cementless group (p = 0.003). However, using three months as baseline, no difference in mean migration between groups was found (p = 0.497). Three implants in the cemented group showed a > 0.2 mm increase in MTPM between one and two years of follow-up. In the cementless group, one implant was revised due to pain and progressive migration, and one patient had a liner-exchange due to a deep infection. Conclusion. The cementless TKA migrated more than the cemented TKA in the first two-year period. This difference was mainly due to a higher initial migration of the cementless TKA in the first three postoperative months after which stabilization was observed in all but one malaligned and early revised TKA. Whether the biological fixation of the cementless implants will result in an increased long-term survivorship requires a longer follow-up. Cite this article: Bone Joint J 2020;102-B(8):1016–1024


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 55 - 60
1 Jul 2019
Laende EK Richardson CG Dunbar MJ

Aims. Early implant migration measured with radiostereometric analysis (RSA) has been proposed as a useful predictor of long-term fixation of tibial components in total knee arthroplasty. Evaluation of actual long-term fixation is of interest for cemented components, as well as for cementless fixation, which may offer long-term advantages once osseointegration has occurred. The objective of this study was to compare the long-term migration with one- and two-year migration to evaluate the predictive ability of short-term migration data and to compare migration and inducible displacement between cemented and cementless (porous metal monoblock) components at least ten years postoperatively. Patients and Methods. Patients who had participated in RSA migration studies with two-year follow-up were recruited to return for a long-term follow-up, at least ten years from surgery. Two cemented tibial designs from two manufacturers and one porous metal monoblock cementless tibial design were studied. At the long-term follow-up, patients had supine RSA examinations to determine migration and loaded examinations (single leg stance) to determine inducible displacement. In total, 79 patients (54 female) returned, with mean time since surgery of 12 years (10 to 14). There were 58 cemented and 21 cementless tibial components. Results. Migration at one year and two years was significantly correlated with long-term migration (p < 0.001). Median migration at the long-term follow-up was 0.6 mm (maximum total point motion; interquartile range (IQR) 0.4 to 0.9) for the cemented group and 0.6 mm. (IQR 0.3 to 1.1) for the cementless group with no difference between groups (p = 0.99). Inducible displacement was significantly lower for the cementless components (p < 0.001). Conclusion. Long-term migration was strongly correlated with two-year migration. Although long-term migration was not different for cemented or cementless tibial components, inducible displacement at the long-term visit was significantly lower for these cementless components, suggesting superior fixation. These findings support the predictive value of short-term migration in determining long-term fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):55–60


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 26 - 26
1 Oct 2018
Dunbar MJ Laende E Richardson CG
Full Access

Introduction. Cementless fixation in total knee arthroplasty has been proposed to offer advantages long-term once osteointegration has occurred as there is no substrate between the implant and the bone to fail. Radiostereometric analysis (RSA) is a useful tool to study fixation, but typically focused on early migration in the first two post-operative years. Few studies have looked at 10-year RSA migration in cementless fixation and those that have contain small numbers of subjects. The objective of this study was to compare implant migration and inducible displacement between cemented and cementless TKA at 10 years and to compare the 10-year migration to the 2-year data in an effort to validate the predictive modelling of RSA. Methods. Subjects who had previously participated in RSA migration studies with 2-year follow-up were recruited to return for a long-term follow-up exam, at least 10 years from their surgery. The implants under study included two cemented designs from two manufacturers and one porous metal monoblock cementless design. At the 10-year visit, subjects had supine RSA exams to determine long-term migration as well as a loaded exam (single leg stance) to determine inducible displacement. Differences between cemented and cementless groups were evaluated with the Mann Whitney U test and Spearman's rank correlation coefficients were calculated for early and late migrations. Significance was set at p < 0.05. Results. Seventy-five subjects were available for long-term follow-up, with average time since surgery of 12 years. This cohort contained 51 women and 24 men with cemented tibial components in 53 cases (37 female) and cementless tibial components in 22 cases (14 female). At the time of surgery, the subjects were 62±7 years old with BMIs of 33±6 m/kg2 (mean±standard deviation). Median migration at the long-term follow-up was 0.6 mm (MTPM; range 0.2–2.8 mm) and was not different between the cemented and cementless groups (p = 0.9, Mann Whitney U Test). Inducible displacement at 10 years was significantly lower for the cementless implants (p<0.001, Figure 1). Migration at one, two, and 10 years did not correlate with inducible displacement at 10 years. However, migration at one year and two years did correlate with long-term migration, with the strongest correlation at two years (Spearman's rank correlation coefficient for all components = 0.74, p < 0.001, Figure 2). Conclusion. Although long-term migration was not different for cemented or cementless (porous metal monoblock) tibial components, inducible displacement at the 10-year visit was significantly lower for these cementless components, suggesting superior fixation. Additionally, long-term migration was strongly correlated to two-year migration, regardless of fixation. These findings support the predictive value of short-term migration in determining long-term fixation. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 71 - 71
1 Oct 2020
Restrepo S Hozack WJ Smith EB
Full Access

Introduction. Cementless TKA offers the potential for strong fixation through biologic fixation technology as compared to cemented TKA where fixation is achieved through mechanical integration of the cement. Few mid-term results are available for newer cementless TKA designs that have used additive manufacturing (3-D printing) for component design. The purpose of this study is to present minimum 5-year clinical outcomes and implant survivorship of a specific cementless TKA using a novel 3-D printed tibial baseplate. Methods. This is a single institution registry review of the prospectively obtained data on 296 cementless TKA using a novel 3-D printed tibial baseplate with minimum 5-year follow-up. Outcomes were determined by comparing pre- and post-operative Knee Injury and Osteoarthritis Outcome Score for Joint Replacement (KOOS JR) scores and pre- and post-operative 12 item Veterans RAND/Short Form Health Survey (VR/SF-12). Aseptic loosening as well as revision for any reason were the endpoints used to determine survivorship at 5 years. Results. At minimum 5-year follow-up, the KOOS JR score improved from 34.88 pre-operatively to 84.29 post-operatively (p-values = 0.0001), the VR/SF-12 scores improved from PH − 31.98 pre-operatively to 42.80 post-operatively (p-values = 0.0001) and the MH − 37.24 pre-operatively to 55.16 post-operatively (p-value = 0.0001). Eleven revisions were performed for an overall revision rate of 2.94% - including 5 PJI (1.34%), 3 loosening (0.80%), 1 instability (0.27%), 2 pain (0.53%). The overall 5-year survivorship was 97.1% and survivorship for aseptic loosening as the endpoint was 98.40%. The survivorship of the 3-D printed porous tibial component was 99.2%. Conclusion. This 3-D printed tibial baseplate and cementless total knee system shows excellent survivorship at 5-year follow-up. The design of this implant and the ability to obtain cementless fixation offers promise for excellent long-term durability


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 55 - 55
1 Oct 2020
Mahan C Blackburn B Anderson LA Peters CL Pelt CE Gililland JM
Full Access

Introduction. Porous metaphyseal cones are increasingly used for fixation in revision total knee arthroplasty (RTKA). Both cemented shorter length stems and longer diaphyseal engaging stems are currently utilized with metaphyseal cones with no clear evidence of superiority. The purpose of this study was to evaluate our experience with 3D printed titanium metaphyseal cones with both short cemented and longer cementless stems from a clinical and radiographic perspective. Methods. In total 136 3D printed titanium metaphyseal cones were implanted. The mean patient age was 63 and 48% were female. The mean BMI was 33 and the mean ASA class was 2.5. There were 42 femoral cones in which 28 cemented and 14 cementless stems were utilized. There were 94 tibial cones in which 67 cemented and 27 cementless stems were utilized. The choice for stem fixation was surgeon dependent and in general cones were utilized for AORI type 2 and 3 bone defects on the femur and tibia. The most common fixation scenario was short cemented stems on both the femur and tibia followed by cemented stem fixation on the tibia and cementless fixation on the femur. Clinical data such as revision, complication, and PRO was collected at last follow-up (minimum follow-up 1 year). Radiographic analysis included cone bony ingrowth and coronal and sagittal alignment on long-standing radiographs. Descriptive statistics were used to compare demographics between patients who had malalignment (HKA beyond +/− 3 degrees and flexion/extension beyond +/− 3 degrees). Adjusted logistic regression models were run to assess malalignment risk by stem type. Results. Patient reported outcomes demonstrated modest improvements with Pre-op KOOS improving from 44 pre-op to 59 post -op and PF-CAT improving from 33 to 37 post-op. PROMIS pain scores decreased significantly from 54 to 44 post-op. 36% of patients had malalignment in either the coronal or sagittal plane. Patients with malalignment were more likely to be female (66.7% vs 40.4%, p-value=0.02). After adjusting for age, sex and BMI, there was a significantly increased risk for coronal plane malalignment when both the femur and tibia had cementless compared to cemented stems (odds ratio=5.54, 95%CI=1.15, 26.80). There was no significantly increased risk when comparing patients with mixed stems to patients with cemented stems. Sagittal plane malalignment was more common with short cemented stems although both coronal plane and sagittal plane malalignment with either stem type was not associated with inferior clinical outcome. Overall cone survivorship was excellent with only two cones removed for infection. Conclusion. Metaphyseal titanium cones provide reliable fixation in revision TKA. However, PROs in this complex patient population show only modest improvement consistent with other variables such as co-morbidities and poor baseline physical function. Small cone inner diameter may adversely influence cementless stem position leading to coronal plane malalignment. Short cemented stems are subject to greater sagittal plane malalignment with no apparent influence on clinical outcome


Bone & Joint Open
Vol. 4, Issue 12 | Pages 923 - 931
4 Dec 2023
Mikkelsen M Rasmussen LE Price A Pedersen AB Gromov K Troelsen A

Aims

The aim of this study was to describe the pattern of revision indications for unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) and any change to this pattern for UKA patients over the last 20 years, and to investigate potential associations to changes in surgical practice over time.

Methods

All primary knee arthroplasty surgeries performed due to primary osteoarthritis and their revisions reported to the Danish Knee Arthroplasty Register from 1997 to 2017 were included. Complex surgeries were excluded. The data was linked to the National Patient Register and the Civil Registration System for comorbidity, mortality, and emigration status. TKAs were propensity score matched 4:1 to UKAs. Revision risks were compared using competing risk Cox proportional hazard regression with a shared γ frailty component.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 971 - 975
1 Nov 1998
McCaskie AW Deehan DJ Green TP Lock KR Thompson JR Harper WM Gregg PJ

Early implants for total knee replacement were fixed to bone with cement. No firm scientific reason has been given for the introduction of cementless knee replacement and the long-term survivorship of such implants has not shown any advantage over cemented forms. In a randomised, prospective study we have compared cemented and uncemented total knee replacement and report the results of 139 prostheses at five years. Outcome was assessed both clinically by independent examination using the Nottingham knee score and radiologically using the Knee Society scoring system. Independent statistical analysis of the data showed no significant difference between cemented and cementless fixation for pain, mobility or movement. There was no difference in the radiological alignment at five years, but there was a notable disparity in the radiolucent line score. With cemented fixation there was a significantly greater number of radiolucent lines on anteroposterior radiographs of the tibia and lateral radiographs of the femur. At five years, our clinical results would not support the use of the more expensive cementless fixation whereas the radiological results are of unknown significance. Longer follow-up will determine any changes in the results and conclusions


Bone & Joint Open
Vol. 5, Issue 4 | Pages 277 - 285
8 Apr 2024
Khetan V Baxter I Hampton M Spencer A Anderson A

Aims

The mean age of patients undergoing total knee arthroplasty (TKA) has reduced with time. Younger patients have increased expectations following TKA. Aseptic loosening of the tibial component is the most common cause of failure of TKA in the UK. Interest in cementless TKA has re-emerged due to its encouraging results in the younger patient population. We review a large series of tantalum trabecular metal cementless implants in patients who are at the highest risk of revision surgery.

Methods

A total of 454 consecutive patients who underwent cementless TKA between August 2004 and December 2021 were reviewed. The mean follow-up was ten years. Plain radiographs were analyzed for radiolucent lines. Patients who underwent revision TKA were recorded, and the cause for revision was determined. Data from the National Joint Registry for England, Wales, Northern Island, the Isle of Man and the States of Guernsey (NJR) were compared with our series.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 1 - 1
1 Oct 2018
Murray DW Mohammad H Matharu G Mellon SJ Judge A
Full Access

Introduction. Unicompartmental knee arthroplasty (UKA) offers significant advantages over total knee arthroplasty (TKA) but is reported to have higher revision rates in joint registries. In both the New Zealand and the UK national registry the revision rate of cementless UKR is less than cementless. It is not clear whether this is because the cementless is better or because more experienced surgeons, who tend to get better results are using cementless. We aim to use registry data to compare cemented and cementless UKA outcomes, matching for surgical experience and other factors. Methods. We performed a retrospective observational study using National Joint Registry (NJR) data on 10,836 propensity matched Oxford UKAs (5418 cemented and 5418 cementless) between 2004 and 2015. Logistic regression was utilized to calculate propensity scores to match the cemented and cementless groups for multiple confounders using a one to one ratio. Standardised mean differences were used before and after matching to assess for any covariate imbalances. The outcomes studied were implant survival, reasons for revision and patient survival. The endpoint for implant survival was revision surgery (any component removal or exchange). Cumulative patient and implant survival rates were determined using the Kaplan-Meier method. Patients not undergoing revision or death were censored on the study end date. The study endpoints implant and patient survival were compared between cemented and cementless groups using Cox regression models with a robust variance estimator. Results. The 5-year implant survival for cemented and cementless Oxford UKA were 95.4% (95%CI 94.6–96.1%) and 96.5% (95%CI 95.8–97.1%) respectively. Implant revision rates were significantly lower in cementless Oxford UKA than cemented, HR 0.8 (CI 0.64–0.99); (p=0.04). The most common reasons for revision in the cemented Oxford UKA group were aseptic loosening (n=44, 0.8%), pain (n=37, 0.7%) and osteoarthritis progression (n=37, 0.7%) compared with osteoarthritis progression (n=28, 0.5%), pain (n=24, 0.4%), aseptic loosening (n=23,0.4%) in the cementless group. Patient survival 5-year survival rates for cemented and cementless Oxford UKA were 96.1% (95%CI 95.2–96.9) and 96.3% (95%CI 95.4–97.1) respectively and were not significantly different HR 0.91 (95%CI 0.71–1.15); (p = 0.42). Conclusion. This is the first study comparing the outcomes of the cemented and cementless UKA from the largest arthroplasty register in the world. Our work shows the cementless Oxford UKA has superior implant survivorship to the cemented implant at 5 years follow up. Cementless implants also had half the risk of requiring revision for aseptic loosening, which may be related to the decreased incidence of tibial radiolucent lines with cementless fixation. Patient survival did not significantly differ between the implant types