Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 527 - 531
1 Apr 2015
Todd NV Skinner D Wilson-MacDonald J

We assessed the frequency and causes of neurological deterioration in 59 patients with spinal cord injury on whom reports were prepared for clinical negligence litigation. In those who deteriorated neurologically we assessed the causes of the change in neurology and whether that neurological deterioration was potentially preventable. In all 27 patients (46%) changed neurologically, 20 patients (74% of those who deteriorated) had no primary neurological deficit. Of those who deteriorated, 13 (48%) became Frankel A. Neurological deterioration occurred in 23 of 38 patients (61%) with unstable fractures and/or dislocations; all 23 patients probably deteriorated either because of failures to immobilise the spine or because of inappropriate removal of spinal immobilisation. Of the 27 patients who altered neurologically, neurological deterioration was, probably, avoidable in 25 (excess movement in 23 patients with unstable injuries, failure to evacuate an epidural haematoma in one patient and over-distraction following manipulation of the cervical spine in one patient). If existing guidelines and standards for the management of actual or potential spinal cord injury had been followed, neurological deterioration would have been prevented in 25 of the 27 patients (93%) who experienced a deterioration in their neurological status.

Cite this article: Bone Joint J 2015;97-B:527–31.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 30 - 32
1 Oct 2014

The October 2014 Children’s orthopaedics Roundup. 360 . looks at: spondylolisthesis management strategies; not all cervical collars are even; quality of life with Legg-Calve-Perthe’s disease; femoral shaft fractures in children; percutaneous trigger thumb release – avoid at all costs in children; predicting repeat surgical intervention in acute osteomyelitis; and C-Arm position inconsequential in radiation exposure


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 500 - 500
1 Nov 2011
Ghanem I Yazbeck P Assi A Massaad A Romanos E Kharrat K
Full Access

Purpose of the study: The cervical spine is the most mobile portion of the spinal column. Trauma raises a high risk of bone and ligament injury. Several cervical collars are used in adults with variable efficacy. For children the problem is the availability of adapted collars, although the issue has not been examined in the literature. The purpose of this work was to evaluate the efficacy of paediatric collars widely used for stabilising the cervical spine in children. Material and method: Thirty asymptomatic patients aged 6 to 12 years participated in this study. Four types of paediatric cervical collars were used (Philadelphia, Miami Jr, Neloc, and the conventional stiff collar). The medium size, proposed for children aged 6 to 12 was used. A standard protocol was applied with the Vicon. ®. system to analyse movement. Mobility of the neck was recorded with and without collars: flexion, extension, lateral inclination and axial rotation. The mobilities recorded without a collar were compared with the values obtained when the children wore each collar. The degree of mobility reduction was calculated for each collar. Seventeen children participated in a reproducibility study. ANOVA and Student’s t test were used for the statistical analysis. Results: There was no statistically significant difference between the collars for efficacy in the saggital plane, though apparent stability was better with the Neloc. The degree of reduction was smaller with the Philadelphia than with the other collars in the frontal plane. Miami Jr and Neloc were more effective than the Philadelphia and the conventional collar in the axial plane. Discussion: This study provide an assessment of the efficacy of paediatric collars to limit mobility of the cervical spine. Although a limited number of collars are proposed, those available on the market appear to ensure optimal stability, particularly the Miami Jr and the Neloc. The stabilisation problem, could be resolved by adapting the collars, particularly the height


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 163 - 163
1 May 2012
Lewis E Dowrick A Liew S
Full Access

Despite the publication of numerous studies, controversy regarding the non- operative treatment of type II dens fractures remains. The halo-thoracic vest (HTV) and cervical collar are the most commonly used devices. We sought to compare the outcomes of patients managed with these devices in terms of non-union risk factors and associated complication rates. This study was a retrospective review of adult patients with type II dens fractures treated non-operatively at a level one trauma centre between 2001 and 2007. The patients were identified using a hospital trauma database. Each patient included in the study had a minimum follow up of six months. Patient medical records and imaging studies were reviewed. Union was defined as stable fibrous union or bony union, measured at three months. A p-value of < 0.05 was considered statistically significant. Sixty-seven patients were included. Thirty-five patients were treated using a HTV and 32 with a collar. Non-union was found to be associated with increased time in HTV or collar (p = 0.011) and with a mechanism of injury involving a low fall (p = 0.008). In addition, the proportion of patients with stable union at three months was 60% for the HVT group versus 35% for the cervical collar group (p = 0.10). There were trends to support an increased risk of non-union with a patient age of greater than or equal to 65 years at the time of presentation (p = 0.13) as well as with a fracture displacement of greater than or equal to 2 mm at time of presentation (p = 0.17). Clinically significant complications of the HTV were of greater prevalence than those experienced by collar patients. Sixty percent of HTV patients suffered one or more complications compared with 6% of collar patients. We were unable to demonstrate any clear advantage or disadvantage of either device. Further investigation of mortality would be beneficial, particularly in the patient group injured with a mechanism involving a low fall (which tends to include more elderly patients)


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 849 - 852
1 Jun 2011
Tomaszewski R Bijata W

Haematogenous osteomyelitis in newborns and infants usually occurs in the long bones and is rare in the short or flat bones. We present two neonates with osteomyelitis of the upper cervical spine affecting the second to fourth cervical vertebrae and the first and second cervical vertebrae, respectively. Despite some delay in diagnosis, both responded successfully to conservative treatment with antibiotics, a cervical collar and needle puncture. The latest follow-up at six and seven years, respectively, showed no persistent neurological deficit and a normal diameter of the cervical spinal canal on MRI


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 828 - 832
1 Jun 2011
Patwardhan S Shyam AK Sancheti P Arora P Nagda T Naik P

Adult presentation of neglected congenital muscular torticollis is rare. We report 12 patients with this condition who underwent a modified Ferkel’s release comprising a bipolar release of sternocleidomastoid with Z-lengthening. They had a mean age of 24 years (17 to 31) and were followed up for a minimum of two years. Post-operatively a cervical collar was applied for three weeks with intermittent supervised active assisted exercises for six weeks. Outcome was assessed using a modified Lee score and a Cheng and Tang score. The mean pre-operative rotational deficit was 8.25° (0° to 15°) and mean lateral flexion deficit was 20.42° (15° to 30°), which improved after treatment to a mean of 1.67° (0° to 5°) and 7.0° (4° to 14°) after treatment, respectively. According to the modified Lee scoring system, six patients had excellent results, two had good results and four had fair results, and using the Cheng and Tang score, eight patients had excellent results and four had good results. Surgical management of adult patients with neglected congenital muscular torticollis using a modified Ferkel’s bipolar release gives excellent results. The range of neck movement and head tilt improved in all 12 patients and cosmesis improved in 11, despite the long-standing nature of the deformity


The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 1 | Pages 82 - 88
1 Feb 1975
Williams TG

Of four hangman's fractures of the axis, three occurred in road accidents and were stable, undisplaced and free of neurological signs, with full recovery after six to twelve weeks in a cervical collar. The fourth fracture occurred in a fall with profound tefraparesis from haemorrhage into the spinal cord, and the patient died a week later. There are two types of hangman's fracture: that of the axis pedicle, which results from more common than usually supposed because of the extension and compression of the cervical column, is slight symptoms it causes


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_II | Pages 124 - 124
1 Feb 2003
Andrews JR Alderman PM
Full Access

In order for the variations in the treatment of whiplash injuries to be studied a short postal questionnaire was sent to every Accident and Emergency department in the U. K. A literature search was then performed in order to determine how much this treatment is evidence based. We present data from 186 Accident and Emergency units. The use of cervical collars in whiplash treatment is widespread. In the literature no study has shown a therapeutic benefit from collars. The majority of studies comparing early mobilization with immobilization in a collar show a prolongation of symptoms, an increase in pain and, decrease in movement from treatment in collars. Physiotherapy is also provided by a number of units. There is certainly evidence that early mobilization is better than rest but, no evidence that physiotherapy is superior than self-mobilization after advice and prescribed exercise programs. Non steroidal anti-inflammatory drugs are also widely prescribed. There is no evidence these are superior to simple analgesia and they have significantly increased side effects. A large proportion of Accident and Emergency units are providing treatment that is at best ineffective and, in some cases, detrimental to patients. This is at significant cost to the NHS and we suggest that treatment protocols be reviewed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 30 - 30
1 Jul 2012
Blocker O Singh S Lau S Ahuja S
Full Access

The aim of the study was to highlight the absence of an important pitfall in the Advanced Trauma Life Support protocol in application of rigid collar to patients with potentially unstable cervical spine injury. We present a case series of two patients with ankylosed cervical spines who developed neurological complications following application of rigid collar for cervical spine injuries as per the ATLS protocol. This has been followed up with a survey of A&E and T&O doctors who regularly apply cervical collars for suspected unstable cervical spine injuries. The survey was conducted telephonically using a standard questionnaire. 75 doctors completed the questionnaire. A&E doctors = 42, T&O = 33. Junior grade = 38, middle grade = 37. Trauma management frontline experience >1yr = 50, <1yr = 25. Of the 75 respondents 68/75 (90.6%) would follow the ATLS protocol in applying rigid collar in potentially unstable cervical spine injuries. 58/75 (77.3%) would clinically assess the patient prior to applying collar. Only 43/75 (57.3%) thought the patients relevant past medical history would influence collar application. Respondents were asked whether they were aware of any pitfalls to rigid collar application in suspected neck injuries. 34/75 (45.3%) stated that they were NOT aware of pitfalls. The lack of awareness was even higher 17/25 (68%) amongst doctors with less that 12 months frontline experience. When directly asked whether ankylosing spondylitis should be regarded as a pitfall then only 43/75 (57.3%) answered in the affirmative. We would like to emphasise the disastrous consequences of applying a rigid collar in patients with ankylosed cervical spine. The survey demonstrates the lack of awareness (∼ 50%) amongst A&E and T&O doctors regarding pitfalls to collar application. We recommend the ATLS manual highlight a pitfall for application of rigid collars in patients with ankylosed spines and suspected cervical spine injuries


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 77 - 77
1 Jun 2012
Blocker O Singh S Lau S Ahuja S
Full Access

Aim of Study. To highlight the absence of an important pitfall in the Advanced Trauma Life Support protocol in application of rigid collar to patients with potentially unstable cervical spine injury. Study Method. We present a case series of two patients with ankylosed cervical spines who developed neurological complications following application of rigid collar for cervical spine injuries as per the ATLS protocol. This has been followed up with a survey of A&E and T&O doctors who regularly apply cervical collars for suspected unstable cervical spine injuries. The survey was conducted telephonically using a standard questionnaire. 75 doctors completed the questionnaire. A&E doctors = 42, T&O = 33. Junior grade = 38, middle grade = 37. Trauma management frontline experience >1yr = 50, <1yr = 25. Of the 75 respondents 68/75 (90.6%) would follow the ATLS protocol in applying rigid collar in potentially unstable cervical spine injuries. 58/75 (77.3%) would clinically assess the patient prior to applying collar. Only 43/75 (57.3%) thought the patients relevant past medical history would influence collar application. Respondents were asked whether they were aware of any pitfalls to rigid collar application in suspected neck injuries. 34/75 (45.3%) stated that they were NOT aware of pitfalls. The lack of awareness was even higher 17/25 (68%) amongst doctors with less that 12 months frontline experience. When directly asked whether ankylosing spondylitis should be regarded as a pitfall then only 43/75 (57.3%) answered in the affirmative. Conclusion. We would like to emphasise the disastrous consequences of applying a rigid collar in patients with ankylosed cervical spine. The survey demonstrates the lack of awareness (∼50%) amongst A&E and T&O doctors regarding pitfalls to collar application. We recommend the ATLS manual highlight a pitfall for application of rigid collars in patients with ankylosed spines and suspected cervical spine injuries


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 199 - 200
1 Mar 2003
O’Malley M Dorgan J Bruce C Roche C
Full Access

Introduction: Atlanto-axial rotatory fixation is a rare condition which occurs more. commonly in children than in adults. The terminology can be confusing and the condition is also known as. ‘ atlanto-axial rotatory sub-luxation’ and ‘atlanto-axial rotary dislocation’ . Rotatory fixation is the preferred term however , as in most cases the fixation occurs within the normal range of rotation of the joint and by definition therefore the joint is neither subluxed nor dislocated. Atlanto-axial rotatory fixation is a cause of acquired torticollis. Diagnosis can be difficult and is often delayed. The classification. system proposed by Fielding in 1977 is most frequently used and will be discussed in detail. Given that this classification system was devised in the days before CT, as well as the fact that combined atlanto-axial and atlanto-occipital rotatory subluxation is omitted from the classification, we propose a modification to the classification of this rare but significant disorder. Methods and Results: The radiological findings in six cases of atlanto-axial rotatory fixation will be illustrated, including a case with associated atlanto-occipital sub-luxation. The pertinent literature will be reviewed and a more comprehensive classification system proposed. The imaging approach to diagnosis and the orthopaedic approach to management will be discussed. Conclusion: In general, children who present with a traumatic torticollis should be treated conservatively with cervical collar and anti-inflammatory medication for one week. Those children whose torticollis fails to resolve after one week require aggressive investigation by ‘dynamic’ computed tomography to assess whether the joint is fixed. If however there is a history of significant trauma then immediate radiological assessment is advised. This approach will avoid over-investigation and over-treatment yet will still detect atlanto-axial rotatory fixation early enough to achieve a good outcome


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_I | Pages 51 - 51
1 Jan 2011
Ramasamy A Midwinter M Mahoney P Clasper J
Full Access

Current ATLS protocols dictate that spinal precautions should be in place when a casualty has sustained trauma from a significant mechanism of injury likely to damage the cervical spine. In hostile environments, the application of these precautions can place pre-hospital medical teams at considerable personal risk. It may also prevent or delay the identification of airway problems. In today’s global threat from terrorism, this hostile environment is no longer restricted to conflict zones. The aim of this study was to ascertain the incidence of cervical spine injury following penetrating ballistic neck trauma in order to evaluate the need for pre-hospital cervical immobilisation in these casualties. We retrospectively reviewed hospital charts and autopsy reports of British military casualties of combat, from Iraq and Afghanistan presenting with a penetrating neck injury during the last 5.5 years. For each patient, the mechanism of injury, neurological state on admission, medical and surgical intervention and cause of death was recorded. During the study period, 90 casualties sustained a penetrating neck injury. The mechanism of injury was by explosion in 66 (73%) and from gunshot wounds in 24 (27%). Cervical spine injuries (either cervical spine fracture or cervical spinal cord injury) were present in 20 of the 90 (22%) casualties, but only 6 (7%) actually survived to reach hospital. Four subsequently died from injuries within 72 hours. Only 1 (1.8%) of the 56 survivors to reach a surgical facility sustained an unstable cervical spine injury that required surgical stabilisation, however this patient died as result of a co-existing head injury. Penetrating ballistic trauma to the neck is associated with a high mortality rate. Our data suggests that it is very unlikely that penetrating ballistic trauma to the neck will result in an unstable cervical spine in survivors. In a hazardous environment (e.g. shooting incidents or terrorist bombings), the risk/benefit ratio of mandatory spinal immobilisation is unfavourable and may place medical teams at prolonged risk. In addition cervical collars may hide potential life threatening conditions


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2006
Nikolakakos L Fountas K Dimopoulos V Chloros G Karampelas I Feltes C Kapsalaki E Robinson J Soucacos P
Full Access

Objective: The purpose of this communication was to evaluate the long-term outcome of patients with type II odontoid fractures treated with anterior screw fixation. Material and Methods: In our prospective clinical study 34 patients, 21 males and 13 females (with mean age 35.4 + 0.8 years) with type II odontoid fractures of traumatic etiology, underwent anterior cannulated screw fixation, during a period of 36 months. All patients had radiologicaly confirmed intact transverse ligament and a reducible odontoid fracture. All patients were immobilized in a Miami J cervical collar for 4 weeks postoperatively. Radiological examination of the cervical spine with plain X rays and cervical spine CT was performed at 6 weeks and two, six and 12 and 24 months postoperatively. Follow-up time ranged between 36 and 80 months (mean follow-up 54.3+ months). Results: 32 patients had an uneventful postoperative course, while one patient developed pulmonary atelectasis, which resolved without any significant sequelae and another one developed a superficial wound infection, which resolved without removing the implanted hardware. Radiographic evaluation showed satisfactory bony fusion and no evidence of abnormal movement at the fracture site in 31 patients (91.1%). In two patients (5.8%), the radiographic studies showed pseudo-arthrosis and instability while in one patient (2.9%) the implanted cannulated screw was broken but there was no instability shown. Conclusions: In our series anterior odontoid screw fixation constituted a safe therapeutic modality with high stability and low mechanical failure rates in short and long term follow-up period


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 405 - 405
1 Sep 2005
Kulkarni A Goel A
Full Access

Introduction We review our experience with the use of plate and screw (C1 lateral mass and C2 pedicle) method of fixation in the treatment of 300 patients with disorders of the craniovertebral junction during a 17-year period at our center. We previously described this method of fixation in 1994. Methods Between 1988 and 2004, 250 patients with atlantoaxial instability were treated with the use of a plate and screw method of fixation at our institution. The various aetiologies of atlantoaxial instability were congenital, trauma and rheumatoid arthritis. All patients had mobile, completely reducible atlantoaxial subluxation. The male: female ratio was 3:1. C1 lateral mass screw and C2 pedicle screw were anchored to a plate bilaterally. For 3 months postoperatively, a hard cervical collar was used. The mean follow-up period was 42 months (range, 4 mo–17 yr). Recently, we have modified the technique by distracting the lateral facet joints, placing a cage bilaterally and then performing the lateral mass fixation for a subgroup of 50 patients with either fixed atlantoaxial joint subluxation or basilar invagination. Results Three patients died in the postoperative phase. Successful stabilization of the atlantoaxial region was documented with dynamic radiography in the other patients. In one patient, one screw was found to be broken 18 months after surgery; however, firm bony fusion was documented in this patient. There were no neurological, vascular, or infective complications. Discussion Segmental fixation of lateral masses with plate and screw method of fixation with the use of intra-articular bone grafts in patients with atlantoaxial instability yielded a 100% fusion rate with a low incidence of complications. Direct application of screws into the thick and large cortico-cancellous lateral masses of atlas and axis provides a biomechanically strong fixation of the region


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 2 - 2
1 Jul 2012
Yewlett A Roberts G Whattling G Ball S Holt C
Full Access

Cervical spine collars are applied in trauma situations to immobilise patients' cervical spines. Whilst movement of the cervical spine following the application of a collar has been well documented, the movement in the cervical spine during the application of a collar has not been. There is universal agreement that C-spine collars should be applied to patients involved in high speed trauma, but there is no consensus as to the best method of application. The clinical authors have been shown two different techniques on how to apply the C-spine collars in their Advanced Life Support Training (ATLS). One technique is the same as that recommended by the Laerdal Company (Laerdal Medical Ltd, Kent) that manufactures the cervical spine collar that we looked at. The other technique was refined by a Neurosurgeon with an interest in pre-hospital care. In both techniques the subjects' head is immobilised by an assistant whilst the collar is applied. We aimed to quantify which of these techniques caused the least movement to the cervical spine. There is no evidence in the literature quantifying how much movement in any plane in the unstable cervical spine is safe. Therefore, we worked on the principle: the less movement the better. The Qualisys Motion Capture System (Qualisys AB, Gothenburg, Sweden) was used to create an environment that would measure movement on the neck during collar application. This system consisted of cameras that were pre-positioned in a set order determined by trial and error initially. These cameras captured reflected infra-red light from markers placed on anatomically defined points on the subject's body. As the position of the cameras was fixed then as the patients moved the markers through space, a software package could deduce the relative movement of the markers to each camera with 6 degrees of freedom (6DOF). Six healthy volunteers (3 M, 3 F; age 21-29) with no prior neck injuries acted as subjects. The collar was always applied by the same person. Each technique was used 3 times on each subject. To replicate the clinical situation another volunteer would hold the head for each test. The movements we measured were along the x, y, and z axes, thus acting as an approximation to flexion, extension and rotation occurring at the C-spine during collar application. The average movement in each axis (x, y and z) was 8 degrees, 8 degrees and 5 degrees respectively for both techniques. No further data analysis was attempted on this small data set. However this pilot study shows that our method enables researchers to reproducibly collect data about cervical spine movement whilst applying a cervical collar


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 154 - 154
1 Mar 2006
Agarwal A Deep K
Full Access

Traumatic rotatory atlanto-axial dislocation and subluxations are rare injuries. The diagnosis is often missed or delayed because of subtle clinical signs. Head tilt makes the interpretation of plain radiographs difficult. Delayed diagnosis often results in chronic instability necessitating surgical stabilization. A hitherto undescribed clinical sign was evaluated which should lead to increased awareness and avoid delay in the diagnosis. Why a new clinical sign?. Easily missed injury. Uncommon but not that uncommon. Difficult to diagnose. Needs high index of suspicion. Not much emphasis given in training. Radiographs usually inconclusive because of torticollis deformity Prerequisites for test. Patient should be conscious. A Lateral radiograph should not show any facet dislocations or fractures in cervical spine. Explain the patient what you intend to do and he/she should report any paraesthesias, sensory or motor symptoms if felt during the test Clinical sign- Elastic Recoil:. Supine patient. Hold head carefully with hands on either side of the head. Instruct patient to report any neurological deterioration. Try to straighten the head tilt gently. Once it is corrected, release the supporting hand towards tilt of the head taking care not to let the head overshoot the original position. An elastic recoil of the head to previous position indicates a positive test. Methods: This study was carried out between 1997 to 2003. The test was applied to 59 patients presenting in Accident and Emergency. All this patients had head tilt even after the application of a hard cervical collar. All the 59 patients had CT scans to confirm or exclude the diagnosis of Rotatory atlanto axial dislocation/subluxation. Results: The new clinical sign was found to be positive in all the fourteen patients with atlanto- axial rotatory dislocations/subluxations which was confirmed by CT scan. The test was also found to be positive in 5 patients with unilateral facet joint dislocation. The sensivity of the test in our study was 100%. The specificity was 89%, positive predictive value 0.73, negative predictive value 0.9 (90%). Conclusion: This new clinical sign may help in early recognition of the injury and also act as an effective screen to indicate which patient needs a CT scan to confirm the diagnosis. This can also be applied in places where the CT scan facilities are not readily available especially in the developing nations


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 155 - 155
1 Mar 2006
OToole P Lenehan B Lunn J Poynton A
Full Access

Introduction: Fixation of the atlantoaxial complex has traditionally involved transarticular screws combined with posterior wiring techniques and structural bone grafting. Although this does lead to excellent fusion rates, the technique has a potential risk of injury to the vertebral artery. In addition, it cannot be used in fixed subluxation of the C1/2 complex. We describe the use of C1 lateral mass screws in combination with C2 pedicle screws for safe and versatile C1/C2 fixation. Methods: Over a fifteen month period, (July 2003–October 2004) a total of 10 patients underwent posterior C1/ C2 fixation alone, or as part of a more extensive posterior construct. The average age was 54.25 years, ranging from 20–78 years. There were 7 women and 3 men. The average length of stay was 18.5 days ranging from 5–36 days. Technique: A midline posterior approach was used in all cases. The C2 roots were mobilized and the C1 lateral masses identified bilaterally. A drill was inserted into the middle of each lateral mass under image intensification. Bicortical polyaxial screws were then inserted. The C2 pedicle screws were inserted under direct vision, as were the other pedicle screws in the more extensive constructs. Contoured rods and posterior iliac bone graft were used in all cases. Results: Five patients required isolated C1/C2 fusion for instability, two patients had an odontoid fracture non-union, one had an unstable C2 fracture, and the remaining two patients had C1/C2 subluxation secondary to rheumatoid arthritis. More extensive posterior instrumentation was performed for the following cases, these included; occipitothoracic fixation in one patient with rheumatoid arthritis with multi-level cervical subluxation, and occipitocervical fixation in three patients, two who had metastatic disease in the cervical spine, and the remaining patient who had rheumatoid arthritis. The final patient was instrumented from C1–C5 posteriorally following removal of a C3 giant cell tumour. No neurological or vascular complications were observed. One patient, with rheumatoid arthritis and osteoporosis, had a halo applied to protect an occipitothoracic construct. All other patients were discharged in a Miami-J cervical collar. The early follow up data, clinical and radiological, showed fusion in all patients. There were no implant failures. Conclusion: The combination of C1 lateral mass and C2 pedicle screws allows safe, effective and versatile fixation of the C1/C2 complex


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 142 - 143
1 Mar 2006
O’Toole P Lenehan B Lunn J Sultan N Murray P Poynton A McCormack D Byrne J Stephens M McManus F
Full Access

Introduction: This retrospective study examined the clinical characteristics, radiological findings, management, and functional outcome in 34 rehabilitated patients who presented with traumatic central cord syndrome. Methods: Between 1994 and 2004 a total of 34 patients with central cord syndrome were admitted to the National Spinal Injuries Unit. There were 29 men and 5 women. The mean age was 56.1 years (15 to 88). The mean follow up time was 4.9 years. Patients were divided into three groups by age, < 50 years (10 patients), 50–70 years (16 patients), and > 70 years (8 patients). The American Spinal Injury Association (ASIA) system recorded the motor and sensory scores, of upper and lower limbs, on admission, discharge and during rehabilitation. Patients underwent radiological investigation that included plain film, CT, and MRI of the cervical spine. Results: The mechanism of injury was a fall in 58.8%, road traffic accident in 35.2% and other in 6%. Alcohol was a contributing factor in 32.4% of cases. Seven patients had a spinal fracture. The cervical spine was involved in 5 cases with the remaining 2 cases involving the thoracic spine. Seventy percent of patients received intravenous steroids. Over half (53%) of the patients had some degree of cervical spondylosis while cord changes were seen in almost all of the patients (79.4%). In the majority of cases (70.4%) the affected level was C3/4. Disc herniation was present in one third of cases (33.2%). The mean upper limb ASIA score on admission was 7.6, on discharge was 12.4 and at follow up was 20.2. A similar pattern was also observed in the lower limb with scores of 12.1, 13.7, and 20.5 respectively. Sensory loss also improved with time. 88.2% of those admitted required urinary catheterization, with 23.5% being discharged to the National Rehabilitation Hospital with a catheter in situ. Surgical decompression was performed in 7 cases. The remainder of patients wore a Miami-J cervical collar. Conclusion: As was shown in the original paper by Schneider et al (1954), hyperextension of a degenerative cervical spine was the predominant mechanism of injury. The return of lower limb function precedes that of upper limb, with autonomic function recovering in the majority of cases. Discussion: In this study patients in the younger age groups had better recovery of function and had fewer complications. The original paper by Schneider et al. stated that conservative treatment was most appropriate, however, in this review surgery was performed in specific cases such as those with cord compression secondary to disc herniation. Alcohol was a significant contributing factor


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 65 - 65
1 Mar 2008
Bednar D Abdelbary H Dekker M
Full Access

Confirmation of cervical stability in multiple trauma patients is often difficult. Prolonged collar immobilization of these patients is often required. Missed injuries can be catastrophic. Since January 2000, the senior author has regularly applied a modification of the classical White & Panjabi stretch test in the operating room as a method of assessing cervical stability in qualifying trauma patients. Review of the first thirty cases finds two cases of stable ligamentous injury identified which would have otherwise been missed, a mean of almost two weeks’ collar immobilization eliminated and no missed instabilities, with no complications or assessment failures to date. The purpose of this study was to present the protocol and preliminary results of a modified White & Panjabi cervical stretch test in the assessment of cervical instability in multiple trauma patients. Multiple trauma patients having no radiographic evidence of cervical instability on static imaging are routinely protected in hard collars until able to cooperate with clinical assessment and/or undergo flexion/extension radiographs for concern to possible discoligame-nous instability in the neck. Beginning in January 2000, such patients who were going to the operating room were routinely assessed with a stress test incorporating fluoroscopically-controlled axial distraction to tensile limit of the neck followed by maximum passive flexion and extension stressing. In the absence of intersegmental hypermobility, cervical precautions and immobilization were considered unnecessary and discarded. Chart documentation was reviewed for outcome and complications after discharge from the hospital. To date thirty-two tests have been performed and twenty-six cases had complete chart documentation available for review. No complications of the procedure and no missed instabilities have been identified. An average of thirteen days’ collar immobilization were eliminated by this protocol. Two cases of ligamentous hypermobility without instability were identified, one at O/C1 and the other at C5/6; both patients were treated observationally and have done well. One case of an undisplaced C2 pedicle fracture in a massively traumatized geriatric case was confirmed as stable on the day of injury, eliminating the need for collar support until the patient died of multiple organ failure twenty-one days later. Two patients went on to have neck pain complaints on regaining consciousness, but could be reassured that there was no instability. The operating-room cervical stress test is a practical and safe maneuver that can eliminate the requirement for collar immobilization in obtunded trauma patients, safely identify subtle ligamentous injuries without frank instability, and confirm stability in cases of undisplaced fracture. The operating-room cervical stress test is an effective tool in screening trauma patients for such injuries. It does not require access to MRI technology and can be used in any hospital with an operating room. Prolonged cervical collar immobilization and missed discoligamentous injuries of the neck in multiple trauma patients can be eliminated with the application of this test


Bone & Joint 360
Vol. 12, Issue 2 | Pages 6 - 9
1 Apr 2023
O’Callaghan J Afolayan J Ochieng D Rocos B