Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 18 - 18
1 Oct 2016
Smith NL Stankovic V Riches PE
Full Access

A number of advantages of unicondylar arthroplasty (UKA) over total knee arthroplasty in patients presenting osteoarthritis in only a single compartment have been identified in the literature. However, accurate implant positioning and alignment targets, which have been shown to significantly affect outcomes, are routinely missed by conventional techniques. Computer Assisted Orthopaedic Surgery (CAOS) has demonstrated its ability to improve implant accuracy, reducing outliers. Despite this, existing commercial systems have seen extremely limited adoption. Survey indicates the bulk, cost, and complexity of existing systems as inhibitive characteristics. We present a concept system based upon small scale head mounted tracking and augmented reality guidance intended to mitigate these factors.

A visible-spectrum stereoscopic system, able to track multiple fiducial markers to 6DoF via photogrammetry and perform semi-active speed constrained resection, was combined with a head mounted display, to provide a video-see-through augmented reality system. The accuracy of this system was investigated by probing 180 points upon a 110×110×50 mm known geometry and performing controlled resection upon a 60×60×15 mm bone phantom guided by an overlaid augmented resection guide that updated in real-time.

The system produced an RMS probing accuracy and precision of 0.55±0.04 and 0.10±0.01 mm, respectively. Controlled resection resulted in an absolute resection error of 0.34±0.04 mm with a general trend of over-resection of 0.10±0.07 mm.

The system was able to achieve the sub-millimetre accuracy considered necessary to successfully position unicondylar knee implants. Several refinements of the system, such as pose filtering, are expected to increase the functional volume over which this accuracy is obtained. The presented system improves upon several objections to existing commercial CAOS UKA systems, and shows great potential both within surgery itself and its training. Furthermore, it is suggested the system could be readily extended to additional orthopaedic procedures requiring accurate and intuitive guidance.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 52 - 52
1 Feb 2016
Semple M Hodgson A
Full Access

Despite being demonstrably better than conventional surgical techniques with regards to implant alignment and outlier reduction, computer navigation systems have not faced widespread adoption in surgical operating rooms. We believe that one of the reasons for the low uptake stems from the bulky design of the optical tracker assemblies. These trackers must be rigidly fixed to a patient's bone and they occupy a significant portion of the surgical workspace, which makes them difficult to use. In this study we introduce the design for a new optical tracker system, and subsequently we evaluate the tracker's performance. The novel tracker consists of a set of low-profile flexible pins that can be placed into a rigid body and individually deflect without greatly affecting the pose estimation. By relying on a pin's stiff axial direction while neglecting lateral deviations, we can gain sufficient constraint over the underlying body. We used an unscented Kalman filter based algorithm as a recursive body pose estimator that can account for relative marker displacements. We assessed our tracker's performance through a series of simulations and experiments inspired by a total knee arthroplasty. We found that the flexible tracker performs comparably to conventional trackers with regards to accuracy and precision, with tracking errors under 0.3mm for typical operating conditions. The tracking error remained below 0.5mm during pin deflections of up to 40mm. Our algorithm ran at computation speeds greater than real-time at 30Hz which means that it would be suitable for use in real-time applications. We conclude that this flexible pin concept provides sufficient accuracy to be used as a replacement for rigid trackers in applications where its lower profile, its reduced invasiveness and its robustness to deflection are desirable characteristics.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 6 - 6
1 Dec 2017
Dib Z Dardenne G Hamitouche C Lefevre C Stindel E
Full Access

The hip centre (HC) in Computer Assisted Orthopedic Surgery (CAOS) can be determined either with anatomical (AA) or functional approaches (FA). AA is considered as the reference while FA compute the hip centre of rotation (CoR). Four main FA can be used in CAOS: the Gammage, Halvorsen, pivot, and least-moving point (LMP) methods. The goal of this paper is to evaluate and compare with an in-vitro experiment (a) the four main FA for the HC determination, and (b) the impact on the HKA.

The experiment has been performed on six cadavers. A CAOS software application has been developed for the acquisitions of (a) the hip rotation motion, (b) the anatomical HC, and (c) the HKA angle. Two studies have been defined allowing (a) the evaluation of the precision and the accuracy of the four FA with respect to the AA, and (b) the impact on the HKA angle.

For the pivot, LMP, Gammage and Halvorsen methods respectively: (1) the maximum precision reach 14.2, 22.8, 111.4 and 132.5 mm; (2) the maximum accuracy reach 23.6, 40.7, 176.6 and 130.3 mm; (3) the maximum error of the frontal HKA is 2.5°, 3.7°, 12.7° and 13.3°; and (4) the maximum error of the sagittal HKA is 2.3°, 4.3°, 5.9°, 6.1°.

The pivot method is the most precise and accurate approach for the HC localisation and the HKA computation.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 3 | Pages 319 - 323
1 Apr 2003
Sikorski JM Chauhan S


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 67 - 67
1 Dec 2017
Giordano G
Full Access

INTRODUCTION

The functional and anatomical results of TKA revisions are less good than a primary TKA. The TKA revision frequency increases and we must improve our surgeries and prepare the next standard of these surgeries. The aim of this study was to evaluate the CAOS / one stage strategie to treat the knee PJIs.

MATERIALS

In this prospective study, between September 2011 and December 2014, 41 patients treated for chronic knee PJI in a one stage revision. For all of them, an imageless CAOS system (ExactechGPS, Blue- Ortho, Gieres) was used. A personalised profile of revision was created. All surgeries were performed with the same protocole and by using the same Optetrak CC knee components (Exactech, Gainesville, FL). All operations were performed by a single senior surgeon.

Indications for the revision TKA were (1) revision of a primary TKA or unicondylar knee arthroplasty (n=27) or (2) revision of revisionTKA (n=15).

The measurement of the HKA angle, the Oxford score and the ROM were evaluated pre and post- operatively.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 356 - 356
1 Dec 2013
Jerry G Dounchis J
Full Access

Introduction

Accurate alignment of components in total knee arthroplasty (TKA) is a known factor that contributes to improvement of post-operative kinematics and survivorship of the prosthetic joint. Recently, CAOS has been introduced into TKA in effort to reduce positioning variability that may deviate from the mechanical axis. However, literature suggests that clinical outcomes following TKA with CAOS may not present a significant improvement from traditional methods of implantation. This would infer that achieving correct alignment, alone, might be insufficient for ensuring an optimal reconstruction of the joint. Therefore, this study seeks to evaluate the importance of soft-tissue balancing, through the quantification of joint kinetics collected with intraoperative sensors, with or without the combined use of CAOS.

Methods

Seven centers have contributed 215 patients who have undergone primary TKA with the use of intraoperative sensors. Of the 7 surgeons contributing patients to this study, 3 utilize CAOS; 4 utilize manual techniques. Along with standard demographic and surgical data being collected as per the multicenter study protocol, soft-tissue release techniques and medial-lateral intercompartmental loads—as indicated by the intraoperative sensors—were also captured pre- and post-release. “Optimal” balance was defined as a medial-lateral load difference of ≤ 15 lbs. A chi-squared analysis was performed to determine if the percentage of soft-tissue release was significantly different between the two groups: patients with CAOS, and patients without CAOS.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 98 - 98
1 May 2012
de Steiger R Balakrishnan V Lowe A
Full Access

A key determinant of long-term implant survival following primary TKA is post- operative alignment of the limb and components. The aim of this study was to compare the accuracy of the Vector-Vision CT-free navigation system versus conventional hand-guided TKA by comparing post-operative alignment.

In a retrospective study 51 sets of post-operative radiographs were analysed, 33 computer-guided and 18 hand-guided. A specific protocol for the measurement of post-operative TKA radiographs was outlined and a novel Trigonometric Method (TM) of angle measurement was compared with the traditional Goniometer Method (GM) of measurement.

The standardised protocol was applied to all 51 sets of radiographs. In total, six angles were measured on each radiograph by two independent observers and compared between the computer-guided and hand-guided groups.

A protocol for the measurement of post-operative TKA radiographs was delineated with step-by-step instructions. The TM of angle measurement had a precision of 1.06° compared with 1.5° using the GM. The standard deviation of the TM was significantly smaller than the GM (p=0.033) and the intra-class correlation coefficient (ICC) of the TM was 0.94 versus 0.90 for the GM.

For the Mechanical Axis (MA), 91% of patients in the computer-guided group attained a MA within 180±3o compared with only 78% in the hand-guided group. T he absolute median raw deviation from 180° was 0.8 in the navigated group and 1.9° in the hand-guided group (p=0.029). Thus, the navigated group was associated with significantly less variability about the neutral 180°. For the other five angle measurements, a higher percentage of patients attained a more neutral alignment with computer-guided TKA; however, these did not reach statistical significance

The computer-assisted group demonstrated significantly more neutral alignment following TKA, and this may in turn lead to reduced TKA failure rates and improved implant longevity. In addition, a new TM of angle measurement was found to be more superior in terms of precision in comparison to the traditional method.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 890 - 898
1 Jul 2015
Renkawitz T Weber M Springorum H Sendtner E Woerner M Ulm K Weber T Grifka J

We report the kinematic and early clinical results of a patient- and observer-blinded randomised controlled trial in which CT scans were used to compare potential impingement-free range of movement (ROM) and acetabular component cover between patients treated with either the navigated ‘femur-first’ total hip arthroplasty (THA) method (n = 66; male/female 29/37, mean age 62.5 years; 50 to 74) or conventional THA (n = 69; male/female 35/34, mean age 62.9 years; 50 to 75). The Hip Osteoarthritis Outcome Score, the Harris hip score, the Euro-Qol-5D and the Mancuso THA patient expectations score were assessed at six weeks, six months and one year after surgery. A total of 48 of the patients (84%) in the navigated ‘femur-first’ group and 43 (65%) in the conventional group reached all the desirable potential ROM boundaries without prosthetic impingement for activities of daily living (ADL) in flexion, extension, abduction, adduction and rotation (p = 0.016). Acetabular component cover and surface contact with the host bone were > 87% in both groups. There was a significant difference between the navigated and the conventional groups’ Harris hip scores six weeks after surgery (p = 0.010). There were no significant differences with respect to any clinical outcome at six months and one year of follow-up. The navigated ‘femur-first’ technique improves the potential ROM for ADL without prosthetic impingement, although there was no observed clinical difference between the two treatment groups.

Cite this article: Bone Joint J 2015; 97-B:890–8.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 65 - 65
1 Apr 2019
Mooney J Huddleston J Amanatullah D
Full Access

Computer-assisted orthopaedic surgery (CAOS) improves mechanical alignment and the accuracy of surgical cuts in the context of total knee arthroplasty. A simplified, CAOS enhanced instrumentation system was assessed to determine if the same effects could be achieved through the use of a less intrusive system. Two cohorts of surgeons (experienced and trainees) performed a series of total knee arthroplasty resections in knee models with and without navigation-enhanced instrumentation. The percentage of resections that deviated from the planned cut by more than 2°or 2mm (outliers) was determined by post-resection advanced imaging for six unique outcome metrics. Within each experience level, the use of the CAOS enhanced system significantly reduced the total percentage of outliers as compared to conventional instrumentation (Figure 1). The experienced users improved from 35% to 4% outliers overall (p < .001) and the trainees from 34% to 10% outliers (p < .001). Comparing across experience levels, the experienced surgeons performed significantly better in only a single resection metric with conventional instrumentation (Figure 2A), varus/valgus tibial alignment, with 8.3% outliers compared to the trainee's 63% outliers (p = .004). The use of CAOS enhanced instrumentation eliminated any differences between the two user groups for all measured resections (Figure 2B). Comparing CAOS enhanced to conventional instrumentation specifically between anatomical deformity types revealed that there is significant improvement (p < .05) with the use of enhanced instrumentation for all three deformity types (Figure 3). These results suggest that non-intrusive CAOS enhanced instrumentation is a viable alternative to conventional instrumentation with possible benefits. This trial also demonstrates that additional experience may not correlate to improved surgical accuracy, and outliers may be less a result of individual surgeon ability or specific anatomic deformities, and more so related to limitations of the instrumentation used or other yet unidentified factors


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 9 - 9
1 Dec 2017
Dai Y Jung A Hamad C Angibaud L
Full Access

As previous meta-analyses on the alignment outcomes of Computer-assisted orthopaedic surgery (CAOS) did not differentiate between CAOS systems, limited information is available on the accuracy of a specific CAOS system based on clinical cases. This study assessed the accuracy and precision of achieving surgical goals in approximately 7000 cases using a specific contemporary CAOS system. Alignment parameters were extracted from the technical logs of 6888 TKA surgeries performed between October 2012 and January 2017 using a contemporary CAOS system. The following surgical parameters were investigated: 1) planned resection defined by the surgeon prior to the bone cuts; 2) Checked resection defined as digitalisation of the bony cuts. Deviations in alignment between planned and checked resections were evaluated, with acceptable resections defined as no more than 3° of resection deviations. For the tibial resection, deviations in tibial varus/valgus angle and posterior tibial slope were 0.06 ± 0.94° and −0.09 ± 1.73°, respectively. For the femoral resection, deviations in femoral varus/valgus angle amd femoral flexion were 0.00 ± 0.97° and −0.17 ± 1.44°, respectively. High percentages of the resections were found to be acceptable (>94% of the cases). The CAOS system investigated was shown to provide accurate and precise intra-operative assistance to the surgeon in achieving targeted resections. The study summarised a large number of cases spanning the application history of the specific CAOS system, including both experienced users and new adopters of the technology. The data provided a complete clinical relevant evaluation demonstrating its high accuracy and precision in resection alignment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 10 - 10
1 Dec 2017
Dai Y Hamad C Jung A Angibaud L
Full Access

Computer-assisted orthopaedic surgery (CAOS) has been demonstrated to increase accuracy to component alignment of total knee arthroplasty compared to conventional techniques. The purpose of this study was to assess if learning affects resection alignment using a specific CAOS system. Nine surgeons, each with >80 TKA experience using a contemporary CAOS system were selected. Prior to the study, six surgeons had already experienced with CAOS TKA (experienced), while the rest three were new to the technology (novice). The following surgical parameters were investigated: 1) planned resection, resection parameters defined by the surgeon prior to the bone cuts; 2) checked resection, digitalisation of the realised resection surfaces. Deviations in the alignment between planned and checked resections were compared between the first 20 cases (in learning curve) and the last 20 cases (well past learning curve) within each surgeon. Any significance detected (p < 0.05) with >1° difference in means indicated clinically meaningful impact on alignment by the learning phase. Both pooled and surgeon-specific analysis exhibited no clinically meaningful significant difference between the first 20 and the last 20 cases from both experienced and novice surgeon groups. The resections in both the first 20 and the last 20 cases demonstrated acceptable rates of over 95% in alignment (<3° deviation) for both experienced and novice surgeons. This study demonstrated that independent of the surgeon's prior CAOS experiences, the CAOS system investigated can provide an accurate and precise solution to assist in achieving surgical resection goals with no clinically meaningful compromise in alignment accuracy and outliers during the learning phase


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 20 - 20
1 Mar 2017
Dai Y Bertrand F Angibaud L Hamad C Jung A Liu D Huddleston J Stulberg B
Full Access

INTRODUCTION. Despite that computer-assisted orthopaedic surgery (CAOS) has been shown to offer increased accuracy to the bony resections compared to the conventional techniques [1], previous studies of CAOS have mostly focused on alignment outcomes based on a small number of patients [1]. Although several recent meta-analyses on the CAOS outcomes have been reported [2], these analyses did not differentiate between systems, while system-dependency has been reported to influence alignment parameters [3]. To date, no study has benchmarked a specific CAOS system based on a large number of clinical cases. The purpose of this study is to assess the accuracy and precision of bony resection in more than 4000 cases using a specific contemporary CAOS system. Materials and Methods. Technical logs of 4292 TKAs performed between October 2012 and January 2016 using a contemporary CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR) were analyzed. The analyses were performed on: 1) planned resection, defined by the surgeon prior to the bone cuts. These parameters serve as inputs for the CAOS guidance; and 2) Checked resection, defined as digitalization of the actual resection surfaces by manually pressing an instrumented checker onto the bony cuts. Deviations in alignment and resection depths (on the referenced side) between planned and checked resections were calculated in coronal and sagittal planes for both tibia and femur (planned vs checked). Results. Summary and distribution of the deviations in resection parameters are presented in Table 1 and Fig 1. On average, the alignment deviations were near 0°, and the deviations in resection depths were less than 0.15mm. Small standard deviations were observed. Discussion. This study demonstrated that the CAOS system investigated can offer accurate and precise intra-operative guidance to the surgeon in achieving his/her surgical goals. TKA performed using conventional instruments is reported to achieve satisfactory lower limb alignment (within ±3° of alignment deviation) in only 70–80% of the cases [2,4], which may contribute to 20% of patients being dissatisfied with the results of surgery [5]. This study reviewed a large number of cases spanning the application history of the specific CAOS system, providing a complete clinically relevant evaluation of its accuracy and precision in terms of bony resection. The results confirmed that the system investigated can be used with confidence that the surgical goals can be achieved with accuracy and reliability. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 360 - 360
1 Mar 2004
Jolles B Genoud P Hoffmeyer P
Full Access

Aims: To determine the precision of conventional versus computer assisted techniques for positioning the acetab-ular component in total hip arthroplasty (THA). Methods: Using a lateral approach, 150 cups were placed by 10 different surgeons in 10 identical plastic pelvis models. Only the immediate operating þeld was visible. Preoperative planning was performed with a computerized tomographic scan. Fifty cups were placed free hand, 50 others with the standard cup ancillary, and the remaining 50 cups using computer-assisted orthopaedic surgery. The accuracy of cup abduction and ante-version was assessed with an electromagnetic system. Results: Using conventional techniques, free hand placement revealed a mean precision of cup anteversion and abduction of 10¡ [range: 5.5–14] and 3.5¡ [2.5–5] respectively. With the cup positioner, these angles measured 8¡ [5–10.5] and 4¡ [3–5.5] respectively, and using the computer assisted method, the mean cup anteversion precision was 1.5¡ [1–2] and mean cup abduction measured 2.5¡ [2–3.5]. Conclusions: Computer assisted cup placement is a very accurate and reproducible technique during THA. It is clearly more precise than either of the two traditional methods of cup positioning, even for well-trained surgeons


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 12 - 12
1 Feb 2016
Jenny J Cross M Hamad C Bertrand F Angibaud L Dai Y
Full Access

Total knee arthroplasty (TKA) is an effective technique to treat end-stage knee osteoarthritis, targeting the restore a physiological knee kinematics. However, studies have shown abnormal knee kinematics after TKA which may lead to suboptimal clinical outcomes. Posterior slope of the tibial component may significantly impact the knee kinematics. There is currently no consensus about the most appropriate slope. The goal of the present study was to analyse the impact of different prosthetic slopes on the kinematics of a PCL-preserving TKA, with the hypothesis that posterior slopes can alter the knee kinematics. A PCL-retaining TKA (Optetrak CR, Exactech, Gainesville, FL) was performed by a board-certified orthopaedic surgeon on one fresh frozen cadaver that had a non arthritic knee with an intact PCL. Intact knee kinematic was assessed using a computer-assisted orthopaedic surgery (CAOS) system (ExactechGPS®, Blue-Ortho, Grenoble, FR) Then, TKA components were implanted using the guidance of the CAOS system. The implanted tibial baseplate was specially designed to allow modifying the posterior slope without repeatedly removing/assembling the tibial insert with varying posterior slopes, avoiding potential damages to the soft-tissue envelope. Knee kinematic was evaluated by performing a passive range of motion 3 separate times at each of the 4 posterior slopes: 10°, 7°, 4° and 1°, and recorded by the navigation system. Femorotibial rotation, antero-posterior (AP) translation and hip-knee-ankle (HKA) angle were plotted with regard to the knee flexion angle. Tibial slopes of 1° and 4° significantly altered the normal rotational kinematics. Tibial slopes of 7° and 10° led to a kinematics close to the original native knee. All tibial slopes significantly altered the changes in HKA before 90° of knee flexion, without significant difference between the different slopes tested. The magnitude of change was small. There was no significant change in the AP kinematics between native knee and all tested tibial slopes. Changing the tibial slope significantly impacted the TKA kinematics. However, in the implant studied, only the rotational kinematics were significantly impacted by the change in tibial slope. Tibial slopes of 7° and 10° led rotational kinematics that were closest to that of a normal knee. Alterations in knee kinematics related to changing tibial slope may be related to a change in the PCL strain. However, these results must be confirmed by other tests involving more specimens


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 90 - 90
1 Feb 2017
Dai Y Angibaud L Jung A Hamad C Bertrand F Stulberg B Huddleston J
Full Access

INTRODUCTION. Studies have reported that only 70–80% of the total knee arthroplasty (TKA) cases using conventional instruments can achieve satisfactory alignment (within ±3° of the mechanical axis). Computer-assisted orthopaedic surgery (CAOS) has been shown to offer increased accuracy and precision to the bony resections compared to conventional techniques [1]. As the early adopters champion the technology, reservation may exist among new CAOS users regarding the ability of achieving the same results. The purpose of this study was to investigate if there are immediate benefits in the accuracy and precision of achieving surgical goals for the novice surgeons, as compared to the experienced surgeons, by using a contemporary CAOS system. Materials and Methods. Two groups of surgeons were randomly selected from TKAs between October 2012 and January 2016 using a CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR), including:. Novice group (7 surgeons): no navigation experience prior to the adoption of the system and have performed ≤20 CAOS TKAs. To investigate the intra-group variation, this group was further divided into surgeons with extensive experience in conventional TKA (novice-senior), and surgeons who were less experienced (novice-junior). Experiences group (6 surgeons): used the CAOS system for more than 150 TKAs. All the surgeries from the novice group (86 cases) and the most recent 20 cases from each surgeon in the experienced group (120 cases) were studied. Deviations in the resection parameters between the following were investigated for both tibia and femur: 1) planned resection, resection goals defined prior to the bone cuts; 2) checked resection, digitization of the realized bone cuts. The deviations were compared within the novice group (novice-senior vs novice-junior), as well as between the novice and experience groups. Knees with optimal resection (deviation<2°/mm, without clinically alter the joint mechanics [2]) and acceptable resection (deviation<3°/mm, as commonly adopted) were identified. Significance was defined as p<0.05. Results. A summary of the deviations is presented in Table 1. No statistical differences were found between the senior and the junior surgeons in the novice group. Similarly, no differences were found between the experienced group and novice group, except for that the cases in the novice group tended to resect slightly more bone in the tibia (p<0.01), and had slightly larger standard deviations compared to the experienced group. The experienced and novice groups had comparable, high percentages of the knees in both the optimal and acceptable categories (Fig 1). Discussion. This study demonstrated that regardless of the surgeon's experience with TKA, new adoption of the CAOS system investigated can immediately benefit the accuracy and precision of the bony resections at a comparable level with experience CAOS users. Although significant difference was found between novice and experienced groups in tibial resection depth, the difference (0.57mm) was clinically irrelevant. The CAOS system offers substantial reduction of the outliers compared to TKAs performed with conventional instruments [3]


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 2 - 2
1 Jan 2004
Jolles B Genoud P Hoffmeyer P
Full Access

The aim of the study was to determine the precision of conventional versus computer-assisted techniques for positioning the acetabular component in total hip arthroplasty (THA). Malposition of the acetabular component during THA increases the occurrence of impingement, reduces range of motion, and increases the risk of dislocation and long-term wear. To prevent malpositioned hip implants, an increasing number of computer assisted surgery systems have been described, but their accuracy is not well established. Using a lateral approach, 150 cups were placed by 10 different surgeons in 10 identical plastic pelvis models. Only the immediate operating field was visible. Pre-operative planning was performed with a computerised tomography scan. Fifty cups were placed free hand, 50 others with the standard cup positioner, and the remaining 50 cups using computer-assisted orthopaedic surgery (Medivision). The accuracy of cup abduction and anteversion was assessed with an electromagnetic system (Fastrak™). Using conventional techniques, free hand placement revealed a mean precision of cup anteversion and abduction of 10° [range 5.5 to 14] and 3.5° [2.5 to 5] respectively. With the cup positioner, these angles measured 8° [5 to 10.5] and 4° [3 to 5.5] respectively, and using the computer assisted method, the mean cup anteversion precision was 1.5° [1 to 2] and mean cup abduction measured 2.5° [2 to 3.5]. Computer assisted cup placement is a very accurate and reproducible technique during THA. It is clearly more precise than either of the two traditional methods of cup positioning, even for well-trained surgeons


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 13 - 13
1 Jan 2004
Jolles B Genoud P Hoffmeyer P
Full Access

To determine the precision of conventional versus computer assisted techniques for positioning the acetabular component in total hip arthroplasty (THA). Malposition of the acetabular component during THA increases the occurrence of impingement, reduces range of motion, and increases the risk of dislocation and long-term wear. To prevent malpositioned hip implants, an increasing number of computer assisted surgery systems have been described, but their accuracy is not well established. Using a lateral approach, 150 cups were placed by 10 different surgeons in 10 identical plastic pelvis models. Only the immediate operating field was visible. Pre-operative planning was performed with a computerised tomography scan. Fifty cups were placed free hand, 50 others with the standard cup positioner, and the remaining 50 cups using computer-assisted orthopaedic surgery (Medivision). The accuracy of cup abduction and anteversion was assessed with an electromagnetic system (Fastrak™). Using conventional techniques, free hand placement revealed a mean precision of cup anteversion and abduction of 10° (range 5.5 to 14) and 3.5° (2.5 to 5) respectively. With the cup positioner, these angles measured 8° (5 to 10.5) and 4° (3 to 5.5) respectively, and using the computer assisted method, the mean cup anteversion precision was 1.5° (1 to 2) and mean cup abduction measured 2.5° (2 to 3.5). Computer assisted cup placement is a very accurate and reproducible technique during THA. It is clearly more precise than either of the two traditional methods of cup positioning, even for well-trained surgeons


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 20 - 20
1 May 2016
Dai Y Angibaud L Harris B Hamad C
Full Access

Introduction. Computer-assisted orthopaedic surgery (CAOS) has been shown to assist in achieving accurate and reproducible prosthesis position and alignment during total knee arthroplasty (TKA) [1]. The most prevalent modality of navigator tracking is optical tacking, which relies on clear line-of-sight (visibility) between the localizer and the instrumented trackers attached to the patient. During surgery, the trackers may not always be optimally positioned and orientated, sometimes forcing the surgeon to move the patient's leg or adjust the camera in order to maintain tracker visibility. Limited information is known about tracker visibility under clinical settings. This study quantified the rotational limits of the trackers in a contemporary CAOS system for maintaining visibility across the surgical field. Materials and Methods. A CAOS system (ExactechGPS®, Blue-Ortho, Grenoble, FR) was set up in an operating room by a standard surgical table according to the manufacture's recommendation. A grid with 10×10 cm sized cells was placed at the quadrant of the surgical table associated with the TKA surgical field [Fig. 1A,B]. The localizer was set up to aim at the center of the grid. A TKA surgical procedure was then initiated using the CAOS system. Once the trackers-localizer connection was established, the CAOS system constantly monitored the root mean square error (RMS) of each tracker. The connection was immediately aborted if the measured RMS was above the defined threshold. Therefore, “visibility” was defined as the tracker-localizer connection with proper accuracy level. An F tracker from the tracker set (3 trackers with similar characteristics) was placed at the center of each cell by a custom fixture, facing along the +Y axis [Fig. 1]. The minimum and maximum angles of rotation around the Z axis (RAZ_MIN and RAZ_MAX) and X axis (RAX_MIN and RAX_MAX) for maintaining tracker visibility were identified. For each cell, the rotational limit of the tracker was calculated for each axis of rotation as the difference between the maximum and minimum angles (RLX and RLZ). Results. The tracker rotation limits were 144.7±3.9° for RLZ (range: 136°–152°), and 150.5±3.9° for RLX (range: 143°–158°). RLX was significantly higher than RLZ across the field (difference in means=5.8°, p<0.01). Along the X axis, the rotational limit decreased slightly for RLZ, but increased slightly for RLX [Fig. 2]. Discussion. Studies have pointed out that the need for maintaining line-of-sight can be a limitation for the use of optical tracking based CAOS systems [2,3]. The results here demonstrated that ExactechGPS provides tracker visibility for more than 135° rotation across the surgical field. Moreover, the system is placed inside the sterile field, eliminating the potential blockage of the optical localizer by the surgical staff, further ensuring tracker visibility. The slight rotational limits trends along the X axis may be due to camera placement at one side of the surgical table. The current methodology may be applied to other CAOS systems to quantify the tracker visibility in a clinical environment. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 21 - 21
1 May 2016
Hamad C Jung A Jenny J Cross M Angibaud L Hohl N Dai Y
Full Access

Introduction. While total knee arthroplasty (TKA) improves postoperative function and relieves pain in the majority of patients with end stage osteoarthritis, its ability to restore normal knee kinematics is debated. Cadaveric studies using computer-assisted orthopaedic surgery (CAOS) system [1] are one of the most commonly used methods in the assessment of post-TKA knee kinematics. Commonly, these studies are performed with an open arthrotomy; which may impact the knee kinematics. The purpose of this cadaveric study was to compare the knee kinematics before and after (open or closed) arthrotomy. Materials and Methods. Kinematics of seven non-arthritic, fresh-frozen cadaveric knees (PCL presumably intact) was evaluated using a custom software application in an image-free CAOS system (ExactechGPS, Blue-Ortho, Grenoble, FR). Prior to the surgical incision, one tracker was attached to the diaphysis of each tibia and femur. Native intact knee kinematics was then assessed by performing passive range of motion (ROM) three separate times, from full extension to at least 110 degrees of flexion, with the CAOS system measuring and recording anatomical values, including flexion angle, internal-external (IE) rotation and anterior-posterior (AP) translation of the tibia relatively to the femur, and the hip-knee-ankle (HKA) angle. Next, an anterior incision with a medial parapatellar arthrotomy was performed, followed by acquisition of the anatomical landmarks used for establishing an anatomical coordinate system in which all the anatomical values were evaluated [2]. The passive ROM test was then repeated with closed and then open arthrotomy (patella manually maintained in the trochlea groove). The anatomical values before and after knee arthrotomy were compared over the range of knee flexion using the native knee values as the baseline. Results. Generally, kinematics from the native knee were found to be similar to those with closed and open arthrotomy. Deviations between native knee and arthrotomy groups (open or closed, whichever was the worst case) were 0.49±0.52mm for the AP translation, 0.44±0.41° for the HKA, and 0.86±0.8° for the IE rotation (Figures 1–3). The deviation from native knee kinematics was found to be higher with increased flexion angles in both HKA and AP translation. Closing the arthrotomy had minimal effect on knee kinematics, and no difference was seen in knee kinematics between an open and closed arthrotomy, so long as the patella is manually maintained within the trochlear groove. Discussion. This study demonstrated arthrotomy, whether open or closed, did not affect the tested knee kinematics compared to a native intact knee. The deviation found in the anatomical values was within the typical range of clinical variation. Increased deviation in high flexion for some anatomical values may be due to difficulty in reproducing consistent motion during ROM test. This study showed that an open arthrotomy with the patella maintained in the trochlea groove provides accurate assessment of the intact knee kinematics


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 19 - 19
1 Mar 2017
Dai Y Angibaud L Jung A Hamad C Bertrand F Huddleston J Stulberg B
Full Access

INTRODUCTION. Although several meta-analyses have been performed on total knee arthroplasty (TKA) using computer-assisted orthopaedic surgery (CAOS) [1], understanding the inter-site variations of the surgical profiles may improve the interpretation of the results. Moreover, information on the global variations of how TKA is performed may benefit the development of CAOS systems that can better address geographic-specific operative needs. With increased application of CAOS [2], surgeon preferences collected globally offers unprecedented opportunity to advance geographic-specific knowledge in TKA. The purpose of this study was to investigate geographic variations in the application of a contemporary CAOS system in TKA. Materials and Methods. Technical records on more than 4000 CAOS TKAs (ExactechGPS, Blue-Ortho, Grenoble, FR) between October 2012 and January 2016 were retrospectively reviewed. A total of 682 personalized surgical profiles, set up based on surgeon's preferences, were reviewed. These profiles encompass an extensive set of surgical parameters including the number of steps to be navigated, the sequence of the surgical steps, the definition of the anatomical references, and the parameters associated with the targeted cuts. The profiles were compared between four geographic regions: United States (US), Europe (EU), Asia (AS), and Australia (AU) for cruciate-retaining (CR) and posterior-stabilized (PS) designs. Clinically relevant statistical differences (CRSD, defined as significant differences in means ≥1°/mm) were identified (significance defined as p<0.05). Results. For resection parameters, CRSDs were found between regions in posterior tibial slope (PTS), tibial resection depth, as well as femoral flexion for both CR and PS profiles (marked in Table 1). Regarding anatomical references, US was the only region using posterior cruciate ligament (PCL) as the reference for CR resection depth (Table 1). Differences in percentage of preference were found in the anatomical references for tibial varus/valgus, tibial resection depth, femoral varus/valgus, femoral axial rotation, and ankle center (Table 1,2). For surgical steps, EU and AU were found to apply gap balancing technique as a common practice for the PS designs, while for the CR designs, EU and AU considerably adopted this technique (Table 2). For PS designs, EU and AU profiles preferred tibial first in the resection workflow, compared to a more balanced preference for other regions. For CR designs, US profiles were in favour of performing the femoral resection first in the workflow, compared to a strong favouring of tibial first resection workflow in EU and AS Am regions. Discussion. This study demonstrated clinically significant geographic differences may exist in the surgeons' preference of surgical parameters, anatomical references, and surgical workflow steps during TKA. These differences may reflect the geographic variations of surgeon training, surgical philosophy, or the specific characteristics of the patient population, which warrants further investigation. The strength of this study was that it is the first study to date that covered all the available surgical profiles spanning the application history of a specific CAOS system. As such, variation due to the operational differences of multiple systems was avoided. For any figures or tables, please contact authors directly (see Info & Metrics tab above).