Introduction. Robotic-assisted total knee arthroplasty (TKA) has demonstrated significant benefits, including improved accuracy of component positioning compared to
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) has been introduced to provide accurate bone cuts and help achieve the target knee alignment, along with symmetric gap balancing. The purpose of this study was to determine if any early clinical benefits could be realized following TKA using robotic-assisted technology. Methods. In all, 140 consecutive patients undergoing RA-TKA and 127 consecutive patients undergoing
Aims. Around the world, the emergence of robotic technology has improved surgical precision and accuracy in total knee arthroplasty (TKA). This territory-wide study compares the results of various robotic TKA (R-TKA) systems with those of
Introduction. Robotic-assisted total knee arthroplasty (TKA) was introduced to improve limb alignment, component positioning, and soft-tissue balance, yet the effect of adoption of this technology has not been established. This study was designed to evaluate whether robotic-assisted TKA leads to improved patient reported outcome measures (PROMs) and patient satisfaction as compared to
Objective. Computer-assisted minimally invasive total knee arthroplasty (CAMI-TKA) has gained increasing interest from orthopaedic surgeons due to its advantages in improving accuracy of component placement combined with benefits in postoperative recovery due to a smaller incision. However, long-term clinical and radiographic outcomes are lacking. The purpose of the present study is to compare the long-term radiographic features and functional outcomes between patients who underwent CAMI-TKA and those who underwent
Systemic emboli released during total knee replacement have been implicated as a cause of peri-operative morbidity and neurological dysfunction. We undertook a prospective, double-blind, randomised study to compare the cardiac embolic load sustained during computer-assisted and
After obtaining informed consent, 80 patients were randomised to undergo a navigated or
Recent advancements in optical navigated TKA have shown improved overall limb alignment, implant placement and reduced outliers compared to
This RCT compared electromagnetic (EM) navigated and
INTRODUCTION. Total knee replacement is mostly done with alignment rods in order to achieve a proper Varus / Valgus alignement. Other techniques are computer assisted navigation or MRI based preoperative planning. iASSIST™ is a computer assisted stereotaxic surgical instrument system to assist the surgeon in the positioning of the orthopaedic implant system components intra-operatively. It is imageless and the communication between the PC and the “Pod's” does not require any direct camera view, it is a bluethooth comunication system. This study presents preliminary results utilizing iASSIST™. The aim of this study was to test and compare radiographic alignment, functional outcomes, and perioperative morbidity of the iASSIST™ Knee system versus
Few previous studies showed that the
Electromagnetic navigation versus
The aim of this prospective single-centre study
was to assess the difference in clinical outcome between total knee replacement
(TKR) using computerised navigation and that of
Systemic embolic phenomena are well recognised during total knee replacement (TKR) and are widely believed to be the cause of intra-operative hypotension and reduced cardiac output, which may lead to circulatory collapse and sudden death. We undertook a prospective, double-blind, randomised study comparing the cardiac embolic load during computer-assisted and
Background: Computer-assisted navigation systems are supposed to improve the precision of implant positioning and therefore the longevity of the knee arthroplasty. Several studies have demonstrated a better mechanical axis or axial component alignment in navigated compared to
We report our five-year functional results comparing navigated and
We previously compared component alignment in total knee replacement using a computer-navigated technique with a conventional jig based method. Improved alignment was seen in the computer-navigated group (Beaver et al. JBJS 2004 (86B); 3: 372–7.). We also reported two-year results showing no difference in clinical outcome between the two groups (Beaver et al. JBJS 2007 (89B); 4: 477–80). We now report our five-year functional results comparing navigated and
Introduction: We previously compared component alignment in total knee replacement using a computer-navigated technique with a conventional jig based method. Improved alignment was seen in the computer-navigated group (Beaver et al. JBJS 2004 (86B); 3: 372–7.). We also reported two-year results showing no difference in clinical outcome between the two groups (Beaver et al. JBJS 2007 (89B); 4: 477–80). We now report our five-year functional results comparing navigated and
Among many factors that influence the outcomes of Total Knee Arthroplasties (TKAs), the mechanical alignment has played major roles for the success of TKA, the survival rates of the implants, and patient functionality. Most, but not all, studies have shown that alignment of the mechanical axis in the coronal plane within a range of 3° varus/valgus is associated with improved long-term function and increased survival rates. Robot-assisted TKA has been developed to improve improves the accuracy and precision of component implantation and mechanical axis (MA) alignment. We hypothesised that robot-assisted TKA would lead to a more accurate leg alignment and component implantation, and thus, improve radiological and clinical outcomes. Between January 2003 and December 2004, a total of 98 primary TKA procedures were compared: 49 using a robotic-assisted procedure and 49 using conventional manual techniques. The cohorts were followed for 121.2 and 119.5 months on average, respectively. Radiographic assessments of the patients were performed preoperatively and at final follow-up and made according to the Knee Society Roentgenographic Evaluation System (KSRES) which included measurements of the coronal mechanical axis and sagittal and coronal inclinations of femoral and tibial components. The radiographic measurements were made using a PACS (Picture Archiving and Communication System). Clinical assessments were performed preoperatively, and at a final follow-up date that was a minimum of postoperative nine years. The clinical results included ranges of motion (ROM), Hospital for Special Surgery (HSS) scores, Western Ontario and McMaster University (WOMAC) scores (for pain and function). The radiographic results showed no statistical differences when comparing the means of the two groups. When considering outliers (defined as error ≥ ±3°) for the mechanical axis, femoral coronal and sagittal inclinations, and tibial coronal and sagittal inclinations, the ROBODOC group had zero outliers for all measurements except for one in tibial sagittal inclination. On the other hand, the conventional group had 12 outliers for mechanical axis, 2 for femoral coronal inclination, 3 for femoral sagittal inclination, 3 for tibial coronal inclination, and 4 for tibial sagittal inclination. However, there were no statistically significant differences between groups for ROM, HSS, or WOMAC scores at the final follow-up. The results of this study support previous work and demonstrate that the ROBODOC-assisted implantation of TKA results in better radiographic outcomes and better ligament balance with equivalent safety when compared to
Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in