Advertisement for orthosearch.org.uk
Results 1 - 20 of 100
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 90 - 90
1 Apr 2019
Pierre D Gilbert J
Full Access

Introduction. Fretting crevice-corrosion (tribocorrosion) of metallic biomaterials is a major concern in orthopedic, spinal, dental and cardiovascular devices. 1. Stainless steel (i.e., 316L SS) is one alloy that sees extensive use in applications where fretting, crevices and corrosion may be present. While fretting-corrosion of this alloy has been somewhat studied, the concept of fretting-initiating crevice corrosion (FICC), where an initial fretting corrosion process leads to ongoing crevice-corrosion without continued fretting, is less understood. This study investigated the susceptibility of 316L SS to FICC and the role of applied potential on the process. The hypothesis is crevice-corrosion can be induced in 316L SS at potentials well below the pitting potential. Materials and Methods. A pin-on-disk fretting test system similar to that of Swaminathan et al. 2. was employed. Disks were ∼35 mm in diameter and the pin area was ∼500 mm. Samples were polished to 600 mm finish, cleaned with ethanol and distilled water. An Ag/AgCl wire as the reference, a carbon counter electrode and phosphate buffered saline (PBS, pH 7.4, Room T) were used for electrochemical testing. Load was controlled with a dead-weight system, monitored with a six-axis load cell (ATI Inc.). Interfacial motion was captured with a non-contact eddy current sensor (0.5 mm accuracy). Motion and load data acquisition was performed with Labview (National Instruments). Samples were loaded to ∼2 N. The potential per tests was increased from −250 to 250 mV (50 mV increments) with new locations and pins used in each repeat (n=3). Testing incorporated a 1 min rest before fretting (5 min, 1.25 Hz, 60 mm displacement saw tooth pattern). Fretting ceased and the load was held while currents were captured for another 5 min to assess ongoing crevice corrosion. Results. Testing showed that crevice corrosion can be initiated within minutes of fretting (or in a few cycles depending on potential; Fig. 1). Potentials as low as −100 mV showed evidence of corrosion, while sustained crevice corrosion was seen at −50 mV. As the potential increased above −50 mV, susceptibility to FICC increased. Fig. 2 is a typical cyclic polarization curve for 316L SS in PBS without fretting. Pitting starts at 400 mV vs Ag/AgCl, and the protection potential in this case is around potentials where FICC can be induced. Discussion. This study showed that 316L SS is prone to FICC starting at −100 mV and the severity of the crevice-corrosion damage depends on the applied potential (Fig. 3). Current after cessation of fretting takes longer to return to baseline or does not return indicating ongoing corrosion without fretting (Fig. 1). If the pin and disk are separated, the crevice-corrosion process stops immediately. The region immediately outside the fretting contact was crevice-like with a very small separation distance between the pin and disk surface which allowed crevice corrosion to develop (Fig. 3). Conclusion. 316L SS can undergo FICC at potentials close to normal physiological electrode potential conditions. Few fretting cycles are required to develop conditions for continued crevice-corrosion. Higher potentials increased the susceptibility of FICC in 316L SS


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 147 - 147
1 Feb 2017
McGrory B Hussey D
Full Access

Introduction. Mechanically assisted crevice corrosion (MACC) in metal-on-polyethylene (MOP) total hip arthroplasty (THA) is of concern, but its prevalence, etiology and natural history are incompletely understood. Methods. From January 2003 to December 2012, 1356 consecutive THA surgeries using a titanium stem, cobalt chromium alloy femoral head, highly crosslinked polyethylene and a tantalum or titanium acetabular shell were performed. Patients were followed at 1 year, and 5 year intervals for surveillance, but also seen earlier if they had symptoms. Any patient with osteolysis or unexplained pain underwent exam, radiographs, CBC, ESR and CRP, as well as serum cobalt (Co) and chromium (Cr) level. MARS MRI was performed if the Co level was > 1 ppb. Results. Symptomatic MACC was present in 39/1356 patients (2.9%). Yearly MACC prevalence ranged from 0 % (0/139, 2005) to 9.9 % (16/162, 2009). 22/39 (56%) patients have undergone revision surgery, and 17/39 (44%) have opted for ongoing surveillance. Of the surveillance patients, serial serum metal ion levels appear to increase over time. Time of symptoms is correlated with tissue necrosis at time of revision. Conclusions. The prevalence of MACC in MOP hips is higher in this cross-sectional study than previously reported. The highest prevalence was found in 2009 with this vendor. Based on how common this finding is in symptomatic patients from 2009, we may consider asking asymptomatic patients to obtain baseline serum ion levels. The goal of our ongoing research is to understand how to avoid permanent soft tissue loss from adverse local tissue reactions caused by MACC


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 579 - 584
1 May 2016
Osman K Panagiotidou AP Khan M Blunn G Haddad FS

There is increasing global awareness of adverse reactions to metal debris and elevated serum metal ion concentrations following the use of second generation metal-on-metal total hip arthroplasties. The high incidence of these complications can be largely attributed to corrosion at the head-neck interface. Severe corrosion of the taper is identified most commonly in association with larger diameter femoral heads. However, there is emerging evidence of varying levels of corrosion observed in retrieved components with smaller diameter femoral heads. This same mechanism of galvanic and mechanically-assisted crevice corrosion has been observed in metal-on-polyethylene and ceramic components, suggesting an inherent biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers clinicians and researchers must understand regarding corrosion of the taper, and its relevance to current orthopaedic practice. Cite this article: Bone Joint J 2016;98-B:579–84


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims. This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported. Methods. This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed. Results. Adjacent to the nail’s telescoping junction, osteolytic changes were observed in bi-planar radiographs of 20/57 segments (35%) after a mean of 9.5 months (95% confidence interval 7.2 to 11.9) after surgery. A total of 8/20 patients with osseous alterations (40%) reported rest and ambulation pain of the lengthened segment during consolidation. So far, 24 Stryde nails were retrieved and in 20 (83%) macroscopic corrosion was observed at the nail’s telescoping junction. Before implant removal 11/20 radiographs (55%) of lengthened segments with these 20 nails revealed osteolysis. Implant retrieval analysis by means of SEM showed pitting and crevice corrosion. EDX detected chromium as the main metallic element of corrosion. Conclusion. Patients are exposed to the risk of implant-related osteolysis of unclear short- and long-term clinical consequences. The authors advocate in favour of an early implant removal after osseous consolidation. Cite this article: Bone Joint Res 2021;10(7):425–436


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 13 - 13
19 Aug 2024
DeBenedetti A Weintraub MT Valle CJD Jacobs JJ Nam D
Full Access

The purpose of this randomized controlled trial was to evaluate serum metal levels in patients undergoing total hip arthroplasty (THA) with a conventional compared to a modular dual-mobility bearing. Patients undergoing primary THA for osteoarthritis were randomized to receive either a modular dual-mobility or conventional polyethylene bearing. All patients received the same titanium acetabular and femoral component and a ceramic femoral head. Serum metal levels were drawn pre-operatively then annually for a minimum of two years postoperatively. An a priori power analysis determined that 40 patients (20 per cohort) were needed to identify a clinically relevant difference in serum cobalt of 0.35 ng/ml (ppb) at 90% power. Forty-six patients were randomized to a modular dual-mobility (n=25) or conventional bearing (n=21) with 40 at a minimum follow-up of two years. No differences in serum cobalt (mean 0.14 ppb [range, 0.075–0.29] vs. 0.20 ppb [range, 0.075–0.57], p=0.39) or chromium levels (mean 0.14 ppb [range, 0.05–0.50] vs. 0.12 ppb [range, 0.05–0.35], p=0.65) were identified between the modular dual-mobility and conventional cohorts, respectively. There was no statistically significant difference in serum Co or Cr at two years postoperatively in subjects implanted with a ceramic head and this particular dual mobility bearing in comparison to a ceramic head and a conventional acetabular component. While modest expected elevations in serum Co and Cr were observed in the dual mobility group, in no case did the Co level exceed the laboratory reference range nor the threshold of one part per billion that has been associated with adverse local tissue reactions to mechanically-assisted crevice corrosion


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 41 - 41
23 Jun 2023
Hernigou P
Full Access

The purpose was to determine the lifetime risk of re-operation due to specific complications related to dual mobility using re-operation as a competing risk, excluding loosening, periprosthetic fracture, and infection. 1503 mono-block dual mobility total hip arthroplasty (DM-THAs). Defining the re-operation when anesthesia (for dislocation) and revision when the implant changed. Surgery (801 for primary, 702 for revision with 201 for recurrent dislocation and 501 for loosening) performed between 1990 and 2020 in average 81-year-old (range 50–102) patients, with 522 living patients at 10 years follow-up. During the first month, outer dislocation (60 cases; 4%) was the cause re-operation (1% among primary and 6 % among revisions). Twenty-four intra-prosthetic dislocations (IPD) were an iatrogenic consequence of a failed closed reduction (reduction maneuver dissociating the inner head) with 1.6% revision. Between 1 month and 1 year, 22 new outer dislocations, while 25 of the 60 “first month” dislocations had recurrent dislocation. Fifteen other IPDs as iatrogenic consequences were observed. At one year, the cumulative revision was 3% (49 of 82 dislocations). Between 1- 10-year FU, 132 other dislocations, and 45 other revisions for dislocations were observed. Corrosion was another cause of revision (37 cases): between the cobalt-chromium shell and the femoral neck (23 hips), or 14 crevice corrosion between the trunnion and the metal head (trunnion damage). In summary, at 10-year: dislocation first cause of re-operation (214 anesthesia, 14%), while among 131 revisions (8.9 %) the 55 iatrogenic intra-prosthetic dislocations were the first revision cause before 39 recurrent dislocations and 37 corrosions. The 522 patients followed ten years or more had a 15% risk revision due to DM specific complications during their lifetime and 10% more risk associated with loosening (6%), periprosthetic fracture (2%) and infection (2%)


Traditional mechanical debridement can only remove visibly infected tissue and is unable to completely clear all the biofilm that hides within muscle crevices and nerves. This study aims to determine the results of single-stage revision using noncontact low frequency ultrasonic debridement in treating chronic periprosthetic joint infections (PJI). A prospective study of consecutive patients requiring single-stage revision for chronic PJI was performed since August 2021. After mechanical debridement, an 8‑mm handheld non‑contact low‑frequency ultrasound probe was used for ultrasonic debridement at a frequency of (25±5) kHz and power of 90% for 5 minutes. Each ultrasound lasted 10 seconds with 3‑seconds intervals. The probe was repeatedly sonicated among all soft tissue and bsingle interface. The distal femoral canal and the posterior capsule of the knee were fully sonicated with a special right‑angle probe. Chemical debridement was then performed to irrigation the whole operative area. Recurrence of infection, culture results and number of colonies 24 hours after ultrasonic debridement were recorded. A total of 45 patients (25 hips and 20 knees) were included and 43 of them (95.6%) were free of infection at a mean follow-up time of 29 months (24 to 33). There were no intraoperative complications related to ultrasonic debridement (neurovascular and muscle injury, poor wound healing and fat liquefaction). The culture‑positive rate of wound liquid before ultrasonic debridement was 40.0% (18/45), which significantly increased to 75.6% (34/45) after ultrasonic debridement (P=0.001). The median number of colonies 24 hours after ultrasonic debridement was 2372 CFU/ml (310 to 4340 CFU/ml), which was significantly higher than that before debridement (307 CFU/ml; 10 to 980 CFU/ml) (P=0.000). Single-stage revision with non‑contact low‑frequency ultrasonic debridement can fully expose bacteria within biofilm, increase the efficacy of chemical debridement and lead to a favorable short‑term outcome without related complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 89 - 89
1 Feb 2020
Haeussler K Pandorf T
Full Access

Introduction. The process of wear and corrosion at the head-neck junction of a total hip replacement is initiated when the femoral head and stem are joined together during surgery. To date, the effects of the surface topography of the femoral head and metal stem on the contact mechanics during assembly and thus on tribology and fretting corrosion during service life of the implant are not well understood. Therefore, the objective of this study was to investigate the influence of the surface topography of the metal stem taper on contact mechanics and wear during assembly of the head-neck junction using Finite Element models. Materials and Methods. 2D axisymmetric Finite Element models were developed consisting of a simplified head-neck junction incorporating the surface topography of a threaded stem taper to investigate axial assembly with 1 kN. Subsequently, a base model and three modifications of the base model in terms of profile peak height and plateau width of the stem taper topography and femoral head taper angle were calculated. To account for the wear process during assembly a law based on the Archard equation was implemented. Femoral head was modeled as ceramic (linear-elastic), taper material was either modeled as titanium, stainless steel or cobalt-chromium (all elastic-plastic). Wear volume, contact area, taper subsidence, equivalent plastic strain, von Mises stress, engagement length and crevice width was analyzed. Results. Titanium tapers showed largest wear volume throughout all simulations, followed by stainless steel and cobalt-chromium. A larger head taper angle resulted in an increase of the wear volume for all taper materials while the increase of the plateau width resulted in a decrease of the wear volume. Taper subsidence, von Mises stress and equivalent plastic strain followed the same trends. Contact area was largest for the models with a large plateau width for all taper materials. Other taper parameters had little effect on contact area. A pure increase of the angular mismatch (AM) resulted in the strongest decrease of the engagement length, while a combined increase of the AM and plateau width showed only a moderate decrease. The smallest effect concerning the engagement length was found when a combined increase of the profile peak height and AM was simulated. Crevice width was largest for a pure increase of the AM and for a combined increase of the AM and profile peak height for all taper materials. Discussion. This study showed that depending on the surface topography and material of the stem taper, wear and taper mechanics during assembly could be affected. For the examined surface topographies wear is distinctively elevated by increasing the AM and the profile peak height due to the resulting higher mechanical loading. More parameter studies under in vivo loading and the study of other taper surface parameters like the peak-to-peak distance have to be conducted to get a deeper insight into taper mechanics and wear effects. However, this study demonstrates the importance of good manufacturing practice of components for hip replacement systems to guarantee reproducible taper mechanics. For any figures or tables, please contact authors directly


Full Access

Modular hip prostheses were introduced to optimize the intra-surgical adaptation of the implant design to the native anatomy und biomechanics of the hip. The downside of a modular implant design with an additional modular interface is the potential susceptibility to fretting, crevice corrosion and wear. For testing hip implants with proximal femoral modularity according to ISO & ASTM, sodium chloride solutions are frequently used to determine the fatigue strength and durability of the stem-neck connection. The present study illustrate that the expansion of standard requirements of biomechanical testing is necessary to simulate metal ion release as well as fretting and crevice corrosion by using alternative test fluids. To assess the primary stability of tibial plateaus in vitro, different approaches had been undergone: cement penetration depth analysis, static tension or compression loading until interface failure. However, these test conditions do not reflect the in vivo physiologic loading modes, where the tibial plateau is predominantly subjected to combined compression and shear forces. The objectives were to evaluate the impact of the tibial keel & stem length on the primary stability of a posterior-stabilised tibial plateau under dynamic compression-shear loading conditions in human tibiae


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 41 - 41
1 Apr 2022
Holleyman R Petheram T Reed M Burton P Malviya A
Full Access

Modular femoral stems offer surgeons great flexibility in biomechanical configuration during total hip replacement (THR) however introduce a taper-trunnion articulation known to be a source of additional wear debris through crevice, fretting and galvanic corrosion with mixed material combinations. This study aimed to investigate the influence of the trunnion bearing surface combination on the revision rate following primary total hip replacement (THR). All patients who underwent THR using an Exeter V40 cemented stainless steel stem and monobloc cemented polyethylene acetabular component (uncemented cups excluded to standardise the acetabular bearing surface and fixation) between January 2003 and December 2019 were extracted from the National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man. The primary exposure was the head substrate used corresponding to the trunnion bearing. Time-to-event was determined by duration of implantation from primary surgery to revision with cases censored at death or end of available follow-up. Multivariable Cox proportional hazard models were used to identify predictors of all cause revision, adjusted for age, sex, American Association of Anaesthesiologists (ASA) grade, body mass index, surgical indication (osteoarthritis or other), and femoral head size. 229,870 THR were identified (66% female, mean age 73.4 years (SD 9.1) with the majority (91%) performed for osteoarthritis of which 4,598 were revised. Mean time from primary to revision or censoring was 6.8 years (SD 4.0). Multivariable modelling showed CoCr/SS trunnions were associated with a significantly higher risk of revision (hazard ratio (HR) 1.31 (95%CI 1.15 to 1.48, p<0.0001) as compared to SS/SS (reference). Both Alumina/SS (HR 0.74 (0.65 to 0.84), p<0.0001) and Zirconia/SS (HR 0.61 (0.49 to 0.74), p<0.0001) were associated with a significantly lower risk of revision. Ceramic heads on an Exeter stem were associated with significantly improved survivorship compared to metal heads in primary THR. CoCr/SS trunnion articulations had the poorest survivorship which may be contributed to by trunnionosis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 129 - 129
1 Apr 2019
Behzadi K
Full Access

Taper corrosion and Trunionnosis are recognized as a major complication of hip replacement surgery presenting in a variety of clinical manifestations commonly referred to as Adverse Local Tissue Reactions. Metal debris is produced through Mechanically Assisted Crevice Corrosion with several implicating factors including mixed alloy components, taper design, head offset, femoral head size, and taper impaction techniques (including magnitude of force, control of alignment and environmental factors). Our project has focused singularly on taper impaction techniques and surgeon controlled factors, as we believe the process of head impaction unto a trunnion is non-standardized, which often times dooms the trunionn to failure. We have contemplated a standardization process, such that given the right tool, the surgeon can control the quality of the taper interlock, which may produce a “cold weld” or perfect taper interlock, eliminate micro motion, mechanically assisted crevice corrosion, and trunionnosis. We have considered four specific problems with current head to trunionn impaction techniques: 1. The magnitude of applied force is uncontrolled, haphazard, and non-standardized. 2. Non-axial application of force is the norm, which produces canting, leading to micro-motion and tribocorrosion. 3. The transfer of energy from the head to the trunionn interface is highly inefficient, such that the energy produced by the surgeon is mostly dissipated in a non-constrained system. 4. No in vitro studies exist to guide surgeons as to the magnitude of force required for a proper interlock. Regardless of the design, including taper angles, larger heads, offset heads, mixed alloy components, shorter and slimmer trunionns there is a widespread problem with the process of head impaction onto the trunionn and the engagement of the modular taper interface that dooms the trunionn interface to failure. The deficiencies noted in current techniques are addressed with a simple tool and minor modification of the femoral stem. We present a new concept/apparatus for head to trunionn taper assembly that fully controls the magnitude and direction of assembly force within a constrained, dry and contaminant free environment. This tool allows application of a perfectly axial and high insertional forces without risk of damage to the femoral stem/bone interface to obtain a cold weld and perfect taper interlock with no chance for canting, micro motion and tribocorrosion. The concept has been verified through several prototypes and can be adopted in order to standardize the process of taper assembly, making this procedure independent of surgeon skill and strength, and minimizing the incidence of trunionnosis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 104 - 104
1 Apr 2019
Pourzal R Hall D Lundberg H Mathew MT Urban R Jacobs J
Full Access

INTRODUCTION. The lifetime of total hip replacements (THR) is often limited by adverse local tissue reactions to corrosion products generated from modular junctions. Two prominent damage modes are the imprinting of the rougher stem topography into the smoother head taper topography (imprinting) and the occurrence of column-like troughs running parallel to the taper axis (column damage). It was the purpose of this study to identify mechanisms that lead to imprinting and column damage based on a thorough analysis of retrieved implants. METHODS. 776 femoral heads were studied. Heads were visually inspected for imprinting and column damage. Molds were made of each head taper and scanned with an optical coordinate measuring machine. The resulting intensity images were used to visualize damage on the entire surface. In selected cases, implant surfaces were further analyzed by means of scanning electron microscopy (SEM) and white light interferometry. The alloy microstructure was characterized for designs from different manufactures. RESULTS. 165 heads exhibited moderate to severe damage (modified Goldberg scale). Out of those heads 83% had imprinting and 28% exhibited column damage. In most cases with imprinting, the entire contact area between stem and head was affected (Figure 1). Several cases exhibited early signs of imprinting, usually starting on the distal-inferior and distal superior side. High resolution SEM imaging revealed that imprinting was a fretting driven process that was independent of the hardness and material of the stem and head. The SEM images showed that the main mechanism was surface fatigue under partial slip fretting. The generated wear debris was the primary driver of imprinting by three-body fretting. The effect was detrimental on the smoother head surface, but less severe on the rougher stem, where debris was pushed into the troughs of the machining mark topography. 90% of cases with column damage also exhibited imprinting. The other ten percent were either cases in which column damage was too extensive to identify imprinting, or the stem taper was smooth and therefore could not induce imprinting. Metallographic analysis showed that column damage was dictated by the alloy microstructure. Wrought alloy heads frequently exhibited banding related to slight alloy segregations. The process of column damage was entirely chemically driven with etching occurring along the banded microstructure eventually resulting in troughs that were several tens of micrometers deep (Figure 2). DISCUSSION. Imprinting and column damage are common damage modes in THR femoral heads. Imprinting is fretting (miro-motion) driven while column damage is caused chemically, but is also dictated by the alloy micro-structure. However, the results suggest that these two damage modes may be related. The damage process starts with local fretting slowly progressing to a large area of imprinting. The imprinting process leads to widening of the crevice, enabling joint fluid and biological constituents (protein, cells, etc.) to enter the taper interface. This change in local chemistry within a confined crevice environment can cause an etching process that leads to column damage, but only if the femoral head alloy has a banded microstructure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 108 - 108
1 Jan 2016
Day J MacDonald D Arnholt C Williams G Getz C Kraay M Rimnac C Kurtz S
Full Access

INTRODUCTION. Mechanically assisted crevice corrosion of taper interfaces was raised as a concern in total hip arthroplasty (THA) approximately 20 years ago (Gilbert 1993). In total shoulder replacement, however, comparatively little is known about the prevalence of fretting assisted crevice corrosion or the biomechanical and patient factors that influence this phenomenon. Given the comparatively lower loading experienced in the shoulder compared to the hip, we asked: (1) What is the prevalence of fretting assisted corrosion in modular total shoulder replacements, and (2) What patient and implant factors are associated with corrosion?. METHODS. Modular components were collected from 48 revision shoulder arthroplasties as part of a multi-center, IRB approved retrieval program. For anatomic shoulders, this included 40 humeral heads, 32 stems and four taper adapters from seven manufacturers. For reverse shoulders, there were eight complete sets of retrieved components from three manufacturers. The components were predominantly revised for instability, loosening and pain. Anatomical shoulders were implanted for an average of 3.1 years (st dev 3.8; range 0.1–14.5). Reverse shoulders were implanted for an average of 2.2 years (st dev 0.7; range 1.3–3.3). Modular components were disassembled and examined for taper damage. The modular junctions were scored for fretting corrosion using a semi-quantitative four-point scoring system adapted from Goldberg, et al. (Goldberg, 2002, Higgs 2013). The scoring system criteria was adapted from Goldberg and Higgs which is comprised of a one to four grading system (with one indicating little-to-no fretting/corrosion and four indicating extensive fretting/corrosion). The component alloy composition was determined using the manufacturer's laser markings and verified by x-ray fluorescence. Patient age, gender, hand dominance, alloy, flexural rigidity of the trunnion and taper geometry were assessed independently as predictors for fretting corrosion. RESULTS. Moderate to severe fretting corrosion (score > 2) was observed in 23% of the anatomic modular components (Figure 1) and 22% of the reverse shoulder components. An example with severe damage is included in Figure 1. There was no significant relation between corrosion scores and any of the assessed factors. DISCUSSION AND CONCLUSION. It has been suggested that fretting assisted crevice corrosion may be a concern in THA, particularly with large head metal-on-metal articulations. We have identified the presence of moderate to severe corrosion on approximately one quarter of all retrieved shoulder arthroplasties. This is similar to the proportion observed in retrieved modular hips (Goldberg, 2002). While the expected loading of the shoulder is less than that in the hip (Westerhoff, 2009), the offset between the effective center of the prosthetic humeral head and the taper connecter is often larger and the size of the taper is smaller. This can increase the effect of bearing surface loading on the taper. We were unable to detect significant associated biomechanical or patient factors. This was probably due to the limited sample size of our population. At the present time, the clinical effects of taper corrosion in shoulder arthroplasty remain unknown


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 4 - 4
1 Dec 2016
Jacobs J
Full Access

Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990s, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction (ALTR). Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to ALTRs secondary to metal on metal bearing surfaces. While modularity in total hip replacement has demonstrable clinical benefits, modular junctions increase the risk of tribocorrosion and the types of ALTRs seen in patients with accelerated metal release from metal-on-metal bearing total hip replacements. The use of modular connections should be minimised in routine primary total hip replacement to avoid tribocorrosion-induced ALTRs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 11 - 11
1 Apr 2017
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location, which is also the location that confers perhaps the greatest clinical utility. The benefits of increased clinical options at that location must be weighed against the potential risks of adding an additional junction to the construct. Those risks include prosthetic neck fracture, taper corrosion, metal hypersensitivity, and adverse local tissue reaction. Further, in-vitro testing of ultimate or fatigue strength of femoral component designs has repeatedly failed to predict behavior in-vivo, raising questions about the utility of in-vitro testing that does not incorporate the effect of mechanically assisted crevice corrosion into the test design. The material properties of Ti alloy and CoCr alloy place limits on design considerations in the proximal femur. The smaller taper junctions that are necessary for primary reconstruction are particularly vulnerable to failure whereas larger taper junctions commonly used in revision modular femoral component designs have greater opportunity for success. Modular junctions of CoCr alloy on conventional Ti alloy have been shown to have a greater incidence of clinically significant mechanically assisted crevice corrosion and adverse reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions, that extend into the metaphysis of the femur. While these designs are primarily designed for revision total hip replacement (THR), they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use of modular neck components for primary THR does not appear to be clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for revision THR and rare primary THR with extreme version or other anatomical circumstances


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 98 - 98
1 Nov 2015
Jacobs J
Full Access

Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction. Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to adverse local tissue reactions secondary to metal-on-metal bearing surfaces. While modularity in THR has demonstrable clinical benefits, modular junctions increase the risk of corrosion and the types of adverse soft tissue reactions seen in patients with accelerated metal release from metal-on-metal bearing THRs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 84 - 84
1 Jul 2014
Jacobs J
Full Access

Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction. Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to adverse local tissue reactions secondary to metal on metal bearing surfaces. While modularity in THR has demonstrable clinical benefits, modular junctions increase the risk of corrosion and the types of adverse soft tissue reactions seen in patients with accelerated metal release from metal-on-metal bearing THRs


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 52 - 52
1 May 2014
Jacobs J
Full Access

Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990's, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction. Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to adverse local tissue reactions secondary to metal on metal bearing surfaces. While modularity in THR has demonstrable clinical benefits, modular junctions increase the risk of corrosion and the types of adverse soft tissue reactions seen in patients with accelerated metal release from metal-on-metal bearing THRs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 69 - 69
1 May 2016
Merz M Robbins C Ward D Bono J Talmo C
Full Access

Introduction. Dual modular femoral stems for total hip arthroplasty were initially introduced to optimize joint biomechanics. These implants have been recalled due to fretting and crevice corrosion at the stem-neck interface, ultimately necessitating revision in a significant number of patients. At our institution we had experience with the Rejuvenate (Stryker, Mahwah, NJ) dual modular stem from 2009 until 2011 before it's recall in 2012. This study identifies complications encountered in patients requiring revision of this prosthesis. Methods. We retrospectively identified all patients who had one particular dual modular stem using our registry database. All patients’ charts and imaging was reviewed using our electronic medical records and digital imaging programs. Patients’ age, gender, revision date, intraoperative and postoperative complications, need for subsequent surgery were identified. Results. 118 femoral stems were implanted in 107 patients (61 male & 46 female) with average follow up of over 3 years. 40 stems (34%) were revised in 36 patients with an average time to revision of 2.7 years. Women had a revision rate of 42% versus 28% in men for an odds ratio of 1.5. Complications were also increased overall with a predilection for women. 7 (15%) of revisions required an extended trochanteric osteotomy (ETO), and 5 (12.5%) had greater trochanter (GT) fractures. The most common complication postoperatively was dislocation in 25% of patients, 7 of which required reoperation. One patient had an infection after revision requiring 2-stage revision. Discussion and Conclusion. Dual modular femoral stems are associated with a high early failure rate due to fretting and crevice corrosion. Women in particular are at higher risk for need for revision and have a higher complication rate during and after revision. A significant number of our patients required an ETO or had a GT fracture intraoperatively. Additionally, adverse local tissue reactions (ALTR) are shown to affect the abductor muscles and joint capsule. These two factors likely contribute to the high dislocation rate after revision. Preoperatively counsel patients on the higher complication rate and revision should be carried out carefully to prevent fracture and maximize stability of the hip