Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A pre-operative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to the ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the pre-operative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. 88% were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. 81% has a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 71 - 71
1 Jun 2018
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with 3-D reconstruction using rapid prototyping technology. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed non-operatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris Hip Scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components w a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 109 - 109
1 May 2019
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a preoperative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3 – 9 years) there were four subsequent surgical interventions: two failures secondary to sepsis, and one stem revision and one open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p < 0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 59 - 59
1 Apr 2017
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were 2 minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ± 16) before surgery to 65 (SD ± 18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%,. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 63 - 63
1 May 2013
Haidukewych G
Full Access

Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability. Posterior column plates can be useful to stabilise the pelvis, and can supplement a trabecular metal uncemented acetabular component. Screws into the dome and into the ischium are used to span the discontinuity. More severe defects may require so-called “cup-cage” constructs or trabecular metal augmentation distraction techniques. The most severe defects typically necessitate custom triflange components. Triflange constructs allow broad based contact with remaining bone stock, and can span surprisingly large defects. Recent cost analyses have shown that custom triflange constructs are comparable to cup-cage-augment reconstructions. The results of these various solutions to manage pelvic discontinuity is extremely variable, however, it is fair to conclude that constructs that allow some bony ingrowth have demonstrated improved survivorship when compared to historical treatments such as bulk allografts protected by cages. The author prefers a posterior column plate and a trabecular metal cup for simple discontinuities, a cup-cage for larger defects, and a custom triflange for the most severe defects. Pre-operative imaging is critical to guide this decision-making, and careful attention to detail is important to obtain a stable, durable construct


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 98 - 98
1 Aug 2017
Ries M
Full Access

Most acetabular defects can be treated with a cementless acetabular cup and screw fixation. However, larger defects with segmental bone loss and discontinuity often require reconstruction with augments, a cup-cage, or triflange component – which is a custom-made implant that has iliac, ischial, and pubic flanges to fit the outer table of the pelvis. The iliac flange fits on the ilium extending above the acetabulum. The ischial and pubic flanges are smaller than the iliac flange and usually permit screw fixation into the ischium and pubis. The custom triflange is designed based on a pre-operative CT scan of the pelvis with metal artifact reduction, which is used to generate a three-dimensional image of the pelvis and triflange component. The design of the triflange involves both the manufacturing engineer and surgeon to determine the most appropriate overall implant shape, screw fixation pattern, and cup location and orientation. A plastic model of the pelvis, and triflange implant can be made in addition to the triflange component to be implanted, in order to assist the surgeon during planning and placement of the final implant in the operating room. A wide surgical exposure is needed including identification of the sciatic nerve. Proximal dissection of the abductors above the sciatic notch to position the iliac flange can risk denervation of the abductor mechanism. Blood loss during this procedure can be excessive. Implant survivorship of 88 to 100% at 53-month follow-up has been reported. However, in a series of 19 patients with Paprosky type 3 defects, only 65% were considered successful. The custom triflange also tends to lateralise the hip center which may adversely affect hip mechanics. The use of a triflange component is indicated in cases with massive bone loss or discontinuity in which other reconstructive options are not considered suitable


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 68 - 68
1 Jun 2018
Gehrke T
Full Access

The treatment of extensive bone loss and massive acetabular defects is a challenging procedure, especially in cases with concomitant pelvic discontinuity (PD). Pelvic discontinuity describes the separation of the ilium proximally from the ischio-pubic region distally. The appropriate treatment strategy is to restore a stable continuity between the ischium and the ilium to reconstruct the anatomical hip center. Several treatment options such as antiprotrusio cages, metal augments, reconstruction cages with screw fixation, structural allograft with plating, jumbo cups, oblong cups and custom-made triflange acetabular components have been described as possible treatment options. Cage and/or ring constructs or acetabular allograft are commonly used techniques with unsatisfactory results and high failure rates. More favorable results have been presented with custom triflange acetabular components (CTAC), although the results are still unsatisfactory. Three-dimensional printing technology (3DP) has already become part of the surgical practice. In this context, preliminary clinical and radiological results using a 3D-printed custom acetabular component in the management of extensive acetabular defects are presented. The overall complication rate was 33.3 %. In one out of 15 patients (6.6 %), implant-associated complication occurred revealing an overall implant-associated survival rate of 93.3%. The 3D-printed custom acetabular component suggests a promising future, although the manufacturing process has high costs and the complication rate is still high


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 59 - 59
1 Dec 2016
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one to one scale 3D model of the hemipelvis. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third flange which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 30 - 30
1 Sep 2012
Colen S Mulier M
Full Access

Treatment of Paprosky type 3A and 3B defects in revision surgery of a hip arthroplasty is challenging. In previous cases such acetabular defects were treated with massive structural allograft bone reconstructions using cemented all-polyethylene cups. In our department we started using custom made triflanged cups to restore the articulation of the hip. The triflanged cups were designed on the basis of CT-image analysis. We are using a new type of implant construction technique with additive technology. This is a production process consisting of ion beam sintering joining metal powder particles layer upon layer on the basis of a 3D model data. The production technique is similar to rapid prototyping manufacturing. 7 Patients have been treated with this new technique. The case studies will be presented with their clinical and radiographic follow-up. We think that additive technology is a breakthrough in treating this kind of severe acetabular defects