Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 546 - 546
1 Oct 2010
Demirhan M Atalar A Bilsel K
Full Access

Purpose: The purpose of this study is to evaluate the biomechanical properties and the stability between locking clavicle plate, dynamic compression plate and external fixation systems on an unstable displaced fracture model under torsional and 3 point bending loading.

Materials and Methods: Forty eight human adult formalin fixed clavicles were paired according to their BMD (DEXA) homogeneously into three groups; Group 1: Locking clavicle plate, Group 2: Dynamic compression plate and Group 3: External fixator. Each specimen was then osteotomized in the midshaft; and a 5mm bone segment was removed in order to stimulate a displaced fracture model. Biomechanical tests were applied in a cyclic loading model in MTS, Bionix 2. Torsional and three point bending forces were performed for 1000 cycles in all subgroups, stiffness was recorded at 10 cycles (initial) and periodic every 100 cyclic intervals. Failure load and moment were obtained after 1000 cycles. Initial stiffness, failure loads and the percentage of initial stiffness for each subgroup were compared across each group. One-way ANOVA and Bonferoni post- hoc tests were utilized to determine which were significantly different from one another with the significance level set as p< 0.05.

Results: The mean initial stiffness(Nmm/deg) - mean failure moments(Nmm) for torsional tests were 703.2 – 7671.7 (locking plate), 448.1 – 4370.3 (compression plate), 365.2 – 2999.7 (ex-fix) and the mean initial stiffness(Nmm) – mean failure loads(N) for bending tests were 32.6 – 213.2 (locking plate), 23.4 – 131.1 (compression plate), 20.6 – 102.7 (ex-fix) respectively. ANOVA test confirmed an overall significant difference between the three constructs in terms of both failure loads and a significant difference only between locking plate and others in terms of initial stiffness. At all cyclic intervals after 100 cycles there was significant difference of percentage of initial stiffness between locking plate and others in bending and torsion. There was a significant difference between compression plate and ex-fix after 700 cycles in torsional group and no difference found in bending group between (any of) them at any cyclic interval.

Conclusions: Locking anatomic clavicle plate is significantly more stable than unlocked dynamic compression plate and external fixator under torsional and bending cyclic loading in an unstable displaced fracture or non-union clavicle model.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims. A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. Methods. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. Results. Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. Conclusion. Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494–502


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives. The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results. Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion. The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives. Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method. Methods. Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions. Results. Conforming design inserts had the lower contact pressure and larger contact area. However, they also had the higher wear rate and volumetric wear. The improved wear performance was found with AMD inserts. In addition, the computationally predicted volumetric wear of crosslinked UHMWPE inserts was less than half that of standard UHMWPE inserts. Conclusion. Our results showed that increasing conformity may not be the sole predictor of wear performance; highly crosslinked mobile-bearing polyethylene inserts can also provide improvement in wear performance. These results provide improvements in design and materials to reduce wear in mobile-bearing UKA. Cite this article: Bone Joint Res 2019;8:563–569


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 28 - 28
17 Apr 2023
Jimenez-Cruz D Dubey M Board T Williams S
Full Access

Hip joint biomechanics can be altered by abnormal morphology of the acetabulum and/or femur. This may affect load distribution and contact stresses on the articular surfaces, hence, leading to damage and degradation of the tissue. Experimental hip joint simulators have been used to assess tribology of total hip replacements and recently methods further developed to assess the natural hip joint mechanics. The aim of this study was to evaluate articular surfaces of human cadaveric joints following prolonged experimental simulation under a standard gait cycle. Four cadaveric male right hips (mean age = 62 years) were dissected, the joint disarticulated and capsule removed. The acetabulum and femoral head were mounted in an anatomical hip simulator (Simulation Solutions, UK). A simplified twin peak gait cycle (peak load of 3kN) was applied. Hips were submerged in Ringers solution (0.04% sodium azide) and testing conducted at 1 Hertz for 32 hours (115,200 cycles). Soft tissue degradation was recorded using photogrammetry at intervals throughout testing. All four hips were successfully tested. Prior to simulation, two samples exhibited articular surface degradation and one had a minor scalpel cut and a small area of cartilage delamination. The pre-simulation damage got slightly worse as the simulation continued but no new areas of damage were detected upon inspection. The samples without surface degradation, showed no damage during testing and the labral sealing effect was more obvious in these samples. The fact that no new areas of damage were detected after long simulations, indicates that the loading conditions and positioning of the sample were appropriate, so the simulation can be used as a control to compare mechanical degradation of the natural hip when provoked abnormal conditions or labral tissue repairs are simulated


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 25 - 25
11 Apr 2023
Richter J Ciric D Kalchschmidt K D'Aurelio C Pommer A Dauwe J Gueorguiev B
Full Access

Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique. A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were biomechanically tested until failure under progressively increasing cyclic loading at 2Hz, starting at 50N peak compression, increasing 0.05N/cycle. Stiffness was calculated from machine data. Acetabular anteversion, inclination and medialization were evaluated from motion tracking data from 250-2500 at 250 cycle increments. Failure cycles and load were evaluated for 5° change in anteversion. Stiffness was higher in G1 (56.46±19.45N/mm) versus G2 (39.02±10.93N/mm) but not significantly, p=0.31. Acetabular fragment anteversion, inclination and medialization increased significantly each group (p≤0.02) and remained non-significantly different between the groups (p≥0.69). Cycles to failure and failure load were not significantly different between G1 (4406±882, 270.30±44.10N) and G2 (5059±682, 302.95±34.10N), p=0.78. From a biomechanical perspective, the present study demonstrates that a bi-directional screw orientation does not necessarily advantageous versus mono-axial alignment when the latter has all three screws evenly distributed over the osteotomy geometry. Moreover, the 3PIO fixation is susceptible to changes in anteversion, inclination and medialization of the acetabular fragment until the bone is healed. Therefore, cautious rehabilitation with partial weight-bearing is recommended


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 35 - 35
1 Dec 2022
Torkan L Bartlett K Nguyen K Bryant T Bicknell R Ploeg H
Full Access

Reverse shoulder arthroplasty (RSA) is commonly used to treat patients with rotator cuff tear arthropathy. Loosening of the glenoid component remains one of the principal modes of failure and is the main complication leading to revision. For optimal RSA implant osseointegration to occur, the micromotion between the baseplate and the bone must not exceed a threshold of 150 µm. Excess micromotion contributes to glenoid loosening. This study assessed the effects of various factors on glenoid baseplate micromotion for primary fixation of RSA. A half-fractional factorial experiment design (2k-1) was used to assess four factors: central element type (central peg or screw), central element cortical engagement according to length (13.5 or 23.5 mm), anterior-posterior (A-P) peripheral screw type (nonlocking or locking), and bone surrogate density (10 or 25 pounds per cubic foot [pcf]). This created eight unique conditions, each repeated five times for 40 total runs. Glenoid baseplates were implanted into high- or low-density Sawbones™ rigid polyurethane (PU) foam blocks and cyclically loaded at 60 degrees for 1000 cycles (500 N compressive force range) using a custom designed loading apparatus. Micromotion at the four peripheral screw positions was recorded using linear variable displacement transducers (LVDTs). Maximum micromotion was quantified as the displacement range at the implant-PU interface, averaged over the last 10 cycles of loading. Baseplates with short central elements that lacked cortical bone engagement generated 373% greater maximum micromotion at all peripheral screw positions compared to those with long central elements (p < 0.001). Central peg fixation generated 360% greater maximum micromotion than central screw fixation (p < 0.001). No significant effects were observed when varying A-P peripheral screw type or bone surrogate density. There were significant interactions between central element length and type (p < 0.001). An interaction existed between central element type and level of cortical engagement. A central screw and a long central element that engaged cortical bone reduced RSA baseplate micromotion. These findings serve to inform surgical decision-making regarding baseplate fixation elements to minimize the risk of glenoid loosening and thus, the need for revision surgery


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 13 - 13
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Faber KJ Langohr GD
Full Access

Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of 90º forward flexion loading. At regular intervals during loading, stem subsidence and micromotion were assessed using a validated system of two optical markers attached to the stem and humeral pot (accuracy of <15µm). The metaphyseal fill ratio did not differ significantly between the oversized and standard stems (0.50±0.06 vs 0.50±0.10; P = 0.997, Power = 0.05); however, the diaphyseal fill ratio did (0.52±0.06 vs 0.45±0.07; P < 0.001, Power = 1.0). Neither fill ratio correlated significantly with stem subsidence or micromotion. Stem subsidence and micromotion were found to plateau following 400 cycles of loading. Oversizing stem thickness prevented implant head-back contact in all but one specimen with the least dense metaphyseal bone, while standard sizing only yielded incomplete head-back contact in the two subjects with the densest bone. Oversized stems subsided significantly less than their standard counterparts (standard: 1.4±0.6mm, oversized: 0.5±0.5mm; P = 0.018, Power = 0.748;), and resulted in slightly more micromotion (standard: 169±59µm, oversized: 187±52µm, P = 0.506, Power = 0.094,). Short stem diametral sizing (i.e., thickness) has an impact on stem subsidence and micromotion following humeral arthroplasty. In both cases, the resulting three-dimensional stem micromotion exceeded, the 150µm limit suggested for bone ingrowth, although that limit was derived from a uniaxial assessment. Though not statistically significant, the increased stem micromotion associated with stem oversizing may in-part be attributed to over-compacting the cancellous bed during broaching, which creates a denser, potentially smoother, interface, though this influence requires further assessment. The findings of the present investigation highlight the importance of proper short stem diametral sizing, as even a relatively small, 2mm, increase can negatively impact the subsidence and micromotion of the stem-bone construct. Future work should focus on developing tools and methods to support surgeons in what is currently a subjective process of stem selection


Bone & Joint Research
Vol. 6, Issue 11 | Pages 623 - 630
1 Nov 2017
Suh D Kang K Son J Kwon O Baek C Koh Y

Objectives. Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Methods. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated. Results. There was greater total contact stress in the varus alignment than in the valgus, with more marked difference on the medial side. An increase in ligament force was clearly demonstrated, especially in the valgus alignment and force exerted on the medial collateral ligament also increased. Conclusion. These results highlight the importance of accurate surgical reconstruction of the coronal tibial alignment of the knee joint. Varus and valgus alignments will influence wear and ligament stability, respectively in TKA. Cite this article: D-S. Suh, K-T. Kang, J. Son, O-R. Kwon, C. Baek, Y-G. Koh. Computational study on the effect of malalignment of the tibial component on the biomechanics of total knee arthroplasty: A Finite Element Analysis. Bone Joint Res 2017;6:623–630. DOI: 10.1302/2046-3758.611.BJR-2016-0088.R2


Bone & Joint Research
Vol. 7, Issue 1 | Pages 20 - 27
1 Jan 2018
Kang K Son J Suh D Kwon SK Kwon O Koh Y

Objectives. Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient’s own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. Methods. The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. Results. The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. Conclusion. The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis. Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20–27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 25 - 25
1 Feb 2020
Santos VD Cubillos PO Santos C De Mello Roesler CR Fancello EA
Full Access

Introduction. The use of bone cement as a fixation agent has ensured the long-term functionality of THA implants . 1. However, some studies have shown the undesirable effect of wear of stem-cement interface, due to the release of metals and polymeric debris lead to implant failure . 2,3. Debris is generated by the micromotion together with a severely corrosive medium present in the crevice of stem-cement interface . 3,4. FEA studies showed that micromotion can affect osseointegration and fretting wear . 5,6. The aim of this research is to investigate if the micromotions measures from in silico analysis of the stem-cement correlate with the fretting-corrosion damage observed on in vitro testing. Methods. The in vitro fretting-corrosion testing was made with positioning and loading based on ISO 7206-4 and ISO 7206-6. It was used Exeter stems embedded in bone cement (PMMA) and immersed in a saline solution (9.0 g/L of NaCl). A fatigue testing system (Instron 8872, USA) was used to conduct the test, applying a sinusoidal cyclic load at 5.0 Hz. The tests were finished after 10 million cycles and images of stem surfaces were taken with a photographic camera (Canon EOS Rebel T6i, Japan) and a stereoscope (Leica M165C, Germany). For the computational analysis, the same testing configurations were modeled on software ANSYS. The analysis was performed using linear isotropic elasticity for both stem (E=193GPa; ⱱ=0.27; σ. y. =400MPa) and PMMA cement (E=2.7GPa; ⱱ=0.35; σ. u. =76MPa). 7,8. . A second-order tetrahedral element was used to mesh all components with a size of 0.5 mm in the stem-cement contact area, increasing until 1.0 mm outside from them. A frictional contact (µ=0.25) with an augmented Lagrange formulation was used. The third cycle of loading was evaluated and a variation of sliding distance less than 10% was set as convergence criteria. The micromotion was measured as the sliding distance on the stem-cement interface. Results and Discussion. The in silico analysis showed the presence of areas almost without micromotion in the proximal lateral and distal medial regions. In these regions, there is no evidence of fretting-corrosion after the in vitro testing. The lack of micromotion is caused by the debonding due to testing configurations and implant design. The absence of contact doesn't allow wear by abrasion or third body, avoiding the fretting-corrosion damage. For the regions distal lateral and proximal medial, it is possible to observe fretting-corrosion due to micromotions, which is supported by the in silico analysis results. The region proximal medial had the highest micromotion on computational analysis and the fretting-corrosion was more severe on laboratory testing, reinforcing the relevance of micromotion in the fretting-corrosion damage on the stem-cement interface. Conclusion. The results indicate a correlation of micromotion calculated by in silico analysis and fretting-corrosion damage observed on in vitro testing. The developed FEA model may be a useful tool to predict the fretting-corrosion damage on the THA implants on pre-clinical testing. Additional efforts are needed to apply this tool on bone-implant systems to predict fretting-corrosion damage observed in vivo. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 5, Issue 6 | Pages 269 - 275
1 Jun 2016
Ono Y Woodmass JM Nelson AA Boorman RS Thornton GM Lo IKY

Objectives. This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods. Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269–275. DOI: 10.1302/2046-3758.56.2000535


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 452 - 452
1 Sep 2009
Loosli Y Baumgartner D Bigolin G Gasser B Heini P
Full Access

Posterior internal fixation systems undergo internal constraints resulting in high load bearing requirement for the pedicular screw/bone interface. Only few studies deal with the impact of the vertebral augmentation on the migration of pedicular screws. In this study, the impact of the pedicular screw augmentation has been investigated under physiological load for osteoporotic vertebras. The data have been proceeded to reduce the influence of vertebral geometry, which generally leads to results devoid of statistical meaning. In 8 osteoporotic vertebrae, two screws have been inserted in each vertebra: a non-augmented on one side and an augmented one on the contralateral side. Compression tests have been performed (two consecutive 50 cycles load steps -100N and 200N-) to observe the displacement of the screw’s head. Two different setups have been employed: a free connection (FC) and a blocked connection (BC). A load step is successful if the migration between two consecutive cycles tends to zero. To reduce the impact of the vertebras’ geometry, the screws’ migration have been compared contra-laterally using the migration ratio (MR). MR of vertebrae is defined as the division of the augmented screw’s migration with the non-augmented screw’s migration. All the augmented screws survived both test setups whereas the non-augmented failed the 200N FC load step. Significant differences are observable only for the highest successful load steps for each test setup: T-tests (P=0.039 and P=0.007 respectively) put into evidence that the results are statistically smaller than one. It is observable as well, that the BC induced fewer loads into the vertebrae: even non-augmented screw can withstand 200N load step. As expected, augmentation of pedicular perforated screws increases their stability in osteoporotic vertebras undergoing large physiological load. This could be explained by the fact that the presence of PMMA increases the load transfer interface improving screw/PMMA complex bearing capacity. Smaller loads induce only small differences that are not significant


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Open
Vol. 2, Issue 11 | Pages 1004 - 1016
26 Nov 2021
Wight CM Whyne CM Bogoch ER Zdero R Chapman RM van Citters DW Walsh WR Schemitsch E

Aims

This study investigates head-neck taper corrosion with varying head size in a novel hip simulator instrumented to measure corrosion related electrical activity under torsional loads.

Methods

In all, six 28 mm and six 36 mm titanium stem-cobalt chrome head pairs with polyethylene sockets were tested in a novel instrumented hip simulator. Samples were tested using simulated gait data with incremental increasing loads to determine corrosion onset load and electrochemical activity. Half of each head size group were then cycled with simulated gait and the other half with gait compression only. Damage was measured by area and maximum linear wear depth.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 51 - 51
1 Mar 2008
Bicknell R Harwood J Ferreira L King G Johnson J Faber K Drosdowech D
Full Access

We compared the initial strength of two techniques for repair of rotator cuff tears. Eight paired cadaveric shoulders with a standardized supraspinatus defect were studied. A transosseous suture and anchor repair was conducted on each side. Specimens were tested under cyclic loading, while fixation was monitored with an optical tracking technique. Mode of failure, number of cycles and load to failure were measured for 50% (5 mm) and 100% (10 mm) loss of repair. Anchors provide improved repair strength at 50% repair loss, in comparison to sutures (p< 0.05). Strength was unaffected by bone mineral density, age and gender. The purpose of this study was to compare the initial strength of two rotator cuff repair techniques. Repair strength with anchors was superior to sutures. Strength was unaffected by bone quality. Anchors, enabling a quicker, less invasive arthroscopic repair, offer improved fixation over sutures, which are more time consuming and invasive. Eight paired shoulders with a standardized supra-spinatus defect were randomized to anchor or suture repair, and subjected to cyclic loading. Repair migration was measured using a digital camera. Failure mode, cycles and load were measured for 50% and 100% loss of repair. Results were correlated with bone mineral density, age and gender. The anchors failed at the anchor-tendon interface, whereas the sutures failed through the sutures. Mean values for 50% loss of repair were 205.6 ± 87.5 cycles and 43.8 ± 14.8 N for the sutures, and 1192.5 ± 251.7 cycles and 156.3 ± 19.9 N for the anchors (p< 0.05). The corresponding values for 100% loss of repair were 2457.5 ± 378.6 cycles and 293.8 ± 27.4 N for the sutures, and 2291.9 ± 332.9 cycles and 262.5 ± 28.0 N for the anchors (p> 0.05). These results did not correlate with bone quality. This study has demonstrated that anchors provide improved repair strength, in comparison to sutures. This may be due to the relative less deformability of the anchors. Repair strength did not correlate with bone quality. This may be attributed to each repair failing primarily through the repair construct or at the anchor-tendon interface, and not through bone


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1479 - 1487
1 Sep 2021
Davis ET Pagkalos J Kopjar B

Aims

The aim of our study was to investigate the effect of asymmetric crosslinked polyethylene liner use on the risk of revision of cementless and hybrid total hip arthroplasties (THAs).

Methods

We undertook a registry study combining the National Joint Registry dataset with polyethylene manufacturing characteristics as supplied by the manufacturers. The primary endpoint was revision for any reason. We performed further analyses on other reasons including instability, aseptic loosening, wear, and liner dissociation. The primary analytic approach was Cox proportional hazard regression.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims

Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues.

Methods

A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 93 - 93
1 Jan 2016
Parekh J Gold J Noble P
Full Access

Introduction. Manifestation of high interface stresses coupled with micromotion at the interface can render the taper lock joint in a modular hip replacement prosthesis at risk for failure. Bending can lead to crevice formation between the trunnion and the head and can potentially expose the interface to the biological fluids, generating interface corrosion. Additionally, development of high stresses can cause the material to yield, ultimately leading to irreversible damage to the implant. The objective of this study is to elucidate the mechanical response of taper junction in different material combination assemblies, under the maximum loads applied during everyday activities. Methods. Computer simulations were executed using a verified FE model. A stable hexahedral mesh (33648 elements) was generated for the trunnion (taper size: 12/14mm) and a tetrahedral mesh (51182 elements) for the head (CoCr, size: 32mm). An assembly load of 4000N was applied along the trunnion axis followed by the application of a load of 230–4300N at 25° and 10° angle to the trunnion axis in the frontal and sagittal planes. A linear static solution was set up using Siemens NX Nastran. Two material combinations were tested - cobalt-chrome head with a titanium alloy trunnion and cobalt chrome head with a cobalt-chrome trunnion. Results. Table1 compares the results obtained from the simulation to those observed in experimental simulations performed under similar loading conditions in our lab. Larger vertical interface displacement was observed in the CoCr-CoCr assembly during toggle-inducing loads. The trunnion bending inside the femoral head was higher in the Ti-CoCr assembly (0.056) compared to the CoCr-CoCr assembly (0.027) with the overall bending of the Ti-CoCr assembly also observed to be much higher (Fig.1). Negligible difference between the stress measured in the femoral head and taper was observed (Fig.2). Discussion. Bending could potentially lead to the development of higher stresses especially under multiple cycles of loading. Fatigue and plastic deformation could result in irreparable damage to the interface leading to implant failure. Additionally, bending causes a separation of the interfaces at the trunnion-head junction, leading to crevice formation, triggering corrosion by exposure to the surrounding physiological environment. Thus, it is crucial that we understand the mechanics of the trunnion-head junction especially under conditions of functional loading