Aim. The aim of this study is to evaluate if the gentamycin
Abstract. Background. The aim of the present experimental study was to analyse vancomycin
Prosthetic joint infection(PJI) still remains a concern in orthopaedic practice. Antibiotic-loaded acrylic-cement(ALAC) is a proven means of lowering the incidence of PJI. However, increasing antimicrobial resistance has complicated both prophylaxis and treatment, prompting the use of combination antimicrobial therapy, with the addition of vancomycin to gentamicin-containing ALAC commonly used. The new antimicrobial, daptomycin, has better activity than vancomycin and we studied its
Prosthetic joint infections are difficult to treat due to bacterial biofilm. Our group has developed a linezolid
Aim. In vivo studies have shown a preventive and curative effect of using an injectable vancomycin containing biphasic ceramic in an osteomyelitis model. No clinical long term pharmacokinetic release study has been reported. Inadequate concentration in target tissues results in treatment failure and selection pressure for antibiotic-resistant organisms. Our hypothesis was that vancomycin in the first week would reach high local concentrations but with low systemic levels. Method. 9 patients (6 women, 3 men) with trochanteric hip fractures classified as A1 and A2 according to the AO-classification all had internal fixations. The mean age was 75.3 years (± S.D. 12.3 years, range 44–84y). An injectable ceramic with hydroxyapatite embedded in a calcium sulphate matrix containing 66mg vancomycin per mL augmented the fixation. A mean of 9.7 mL (± S.D. 0.7 mL, range 8–10mL) was used. The
Aim. Local antibiotics released through a carrier is a commonly used technique to prevent infection in orthopaedic procedures. An interesting carrier in aseptic bone reconstructive surgery are bone chips impregnated with AB solution. Systemically administered Cefazolin (CFZ) is used for surgical site infection prophylaxis however in vitro study showed that fresh frozen and processed bone chips impregnated with CFZ solution completely release the CFZ within a few hours. On the other hand irradiated freeze-dried bone chips, treated with supercritical CO2 (scCO2) have been shown to be an efficient carrier for the antibiotics vancomycine or tobramycine. With this pilot study we wanted to investigate if CFZ solution impregnation of bone chips treated with scCO2 shows a more favorable release pattern of CFZ. Method. The bone chips were prepared using the standard scCO2 protocol and were impregnated with 100 mg/ml cefazolin at different timepoints during the process: before freeze drying (BC type A), after freeze drying (BC type B) and after gamma-irradiation. 0.5g of the impregnated bone grafts were incubated with 5ml of fetal calf serum (FCS) at 37°C. At 2, 4, 6, 8 and 24h of incubation 200µl of eluate was taken for analysis. After 24h the remaining FCS was removed, bone grafts were washed and new FCS (5ml) was added. Consecutive eluate samples were taken at 48, 72 and 96h of incubation. The concentration of CFZ in the eluates was measured with the validated UPLC-DAD method. Analysis was performed in triplicate. Results. The mean concentration of CFZ in the eluate obtained from BC type A incubated for 2h was higher compared to BC type B, respectively 581 mg/l and 297 mg/l. However, the
Objectives. Investigate the incorporation of an antibiotic in bone cement using liposomes (a drug delivery system) with the potential to promote osseointegration at the bone cement interface whilst maintaining antibiotic
Aim. Allograft bone chips used in complex bone reconstruction procedures are associated with an increased infection risk. The perioperative use of systemic cefazolin is standard to prevent infection, but is less effective in the presence of avascular bone grafts. Bone chips have been described as a carrier for local delivery of antibiotics, but impregnation with cefazolin in a prophylactic setting has not been described. We aimed to obtain a prolonged cefazolin release from bone chips to maximize the prophylactic effect. Method. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were incubated for 20 min- 4h under atmospheric pressure or under vacuum. Cefazolin
High-dose antibiotic-loaded acrylic cement (ALAC) is used for managing periprosthetic joint infections (PJIs). The marked increase in resistant high-virulence bacteria is drawing the attention of physicians towards alternative antimicrobial formulations to the routinely used antibiotics. To date, few studies simultaneously investigated the
Aim. The preparation of antibiotic-containing polymethyl methacrylate (PMMA), as spacers generates a high polymerization heat, which may affect their antibiotic activity; it is desirable to use bone cement with a low polymerization heat. Calcium phosphate cement (CPC) does not generate heat on polymerization, and comparative
Background. Additive manufacturing (AM) has created many new avenues for material and manufacturing innovation. In orthopaedics, metal additive manufacturing is now widely used for production of joint replacements, spinal fusion devices, and cranial maxillofacial reconstruction. Plastic additive manufacturing on the other hand, has mostly been utilized for pre-surgical planning models and surgical cutting guides. The addition of pharmaceuticals to additively manufactured plastics is novel, particularly when done at the raw material level. The purpose of this study was to prove the concept of antibiotic
Aim. The demand for a synthetic bone substitute that can build bone and at the same time kill bacteria is high. The aim of this study was to compare the
Vancomycin -impregnated bonechips from a human morselized femoral head allograft (BCs) are used in orthopaedic surgery to treat infections. Literature suggests that bonechips can be efficient vancomycin carriers, but due to the diversity in the type of bonechips, of impregnation and of method used to evaluate AB release, there are no uniform guidelines. We performed an in vitro study to examine the release of vancomycin from solution-impregnated deepfrozen processed bonechips. Quantification was performed using a fully validated chromatographic method. Results were compared with the elution-profile from Osteomycin®, a commercially available lyophilised processed bonegraft. Different vancomycine impregnation-concentrations and impregnation-durations of frozen processed bonechips were investigated. After impregnation, bonechips were rinsed with saline in order to determine only the absorbed vancomycin.
Aim. Bone and implant-associated infections caused by microorganisms that grow in biofilm are difficult to treat because of persistence and recurrence. Systemic administration of antibiotics is often inefficient because the poor vascularization of the site of infection. This issue has led to the development of biomaterials capable to locally deliver high doses of therapeutic agents to the injured bone with minimal systemic effects. In this context, calcium sulphate/hydroxyapatite (CS/HA) bone graft substitutes are widely used being safe, osteoconductive and resorbable biomaterials that can be easily enriched with consistent amounts of antibiotics. In this in vitro study, the capability of the eluted antibiotics to select the tested bacterial strains for antibiotic resistance was evaluated to confirm the safe use of the product. Method. S. aureus, S. epidermidis and P. aeruginosa isolated in our Institute from bone and joint infection with different resistance phenotypes were used. 6 × 2.5 mm CS/HA discs were generated by pouring the antibiotic loaded formulations in a mold and were used as a modified disk diffusion test. The resistance selection was evaluated by subculturing cells growing on the edge of the zone of inhibition (ZOI) for seven days. Minimum inhibitory concentrations (MICs) of gentamicin and vancomycin were determined by broth microdilution method before and after the selection of resistance assay. In addition, MICs were assessed after seven day passage on antibiotic free agar plates to evaluate if eventual decrease of antibiotic susceptibility was stable or only transient. Results. Commonly, no adaptation in presence of both CS/HA formulations was observed by analysing ZOI on agar medium. The kinetic of decrease of the ZOI was similar between the strains, with the exception of gentamicin resistant staphylococci in presence of gentamicin loaded CS/HA, which was faster with respect to the susceptible strains. Conclusions. The present study shows that
Aim. Chronic osteomyelitis often requires surgical debridement and local antibiotic treatment. Disadvantages of PMMA carriers include low dose release and the requirement of surgical removal in the case of PMMA-beads. Synthetic nanocrystalline calcium phosphate (nCP) materials, which mimic the chemical structure of the mineral composition of bone, have been well accepted as bone grafting materials due to their consistent osteoconductivity, ease of use, and mechanical properties. Such a material which remodels into native bone is a much more attractive option. The aim of this study is to investigate the release of gentamicin from CaP in vitro and in vivo when implanted in a rabbit femoral condyle defect. Method. Three formulations of nCP were evaluated in this study: putty, paste and porous. Four cylindrical dowels were made for each group with gentamicin sulphate at a concentration of 20mg/cc of paste. Material was eluted in PBS at 37C and pH 7.0 and
Objectives. This study is to compare the
The objective of this study was to compare the
This study was performed to investigate the concentration of silver ions release up to a time of 9 weeks as well as the antimicrobial activity of silver sulfate and Nano-silver mixed bone cement on Candida albicans, in expectation of a new way of therapy in manner of a time limited application – a silverions releasing bone cement spacer. Two different kinds of silver products were used and mixed with polymethylmetacrylate (PMMA, De Puy) bone cement:. Nano-silver with a particle size of 5–50 nm and active surface of 4 m2/ g. (Nanonet Styria, Austria). Silver sulfate in a finely powdered form (Fisher, GB). Concentrations of 0.1%, 0.5%, 1% and 5% of the Nano-silver and the silver-salt by weight were mixed with the dry powder portion of the cement. To test the silver-ions release from the silver-containing bone cement two models of
Aim. To prevent infections after orthopaedic surgery, intravenous antibiotics are administered perioperatively. Cefazolin is widely used as the prophylactic antibiotic of choice. Systemic antibiotic therapy may however be less effective in longstanding surgery where bone allografts are used. Bone chips have been shown to be an effective carrier for certain types of antibiotics and may provide the necessary local antibiotic levels for prophylaxis. To be efficient a prolonged release is required. In contrast to vancomycin with proven efficient prolonged release from Osteomycin, this has not been described for cefazolin. We developed a protocol to bind cefazolin to bone chips by means of a hydrogel composed of proteins naturally present in the human body. Method. Three types of bone chips were evaluated: fresh frozen, decellularized frozen and decellularized lyophilized. Bone chips were incubated with 20 mg/ml cefazolin or treated with liquid hydrogel containing either 1 mg/ml fibrin or 1 mg/ml collagen and 20 mg/ml cefazolin. The cefazolin hydrogel was distributed in the porous structure by short vacuum treatment. Bone chips with cefazolin but without hydrogel were either incubated for 20 min- 4h or also treated with vacuum. Cefazolin
The rate of periprosthetic joint infections (PJI) after primary total hip arthroplasty (THA) is approximately 1%. As the number of THAs performed each year continue to increase (550,000 by 2030), a corresponding increase in the number of hip PJI cases is likely to occur. A chronic deep infection may be treated by either chronic suppression, irrigation and debridement, single-stage exchange, or two-stage exchange. In the United States, the gold standard for chronic PJI continues to be a two-stage exchange. The benefit of an antibiotic impregnated cement is that they produce higher local concentrations of antibiotics than systemic intravenous administration. Hip spacers may be either static or articulating. Static spacers are reserved for cases of massive acetabular bone loss in which an articulating spacer is not feasible. A static spacer consists of a block of antibiotic cement in the native acetabulum and antibiotic coated rod in the femoral canal. Limb shortening, loss of soft tissue planes, and disuse osteopenia and muscle atrophy are all limitations of static spacers. In contrast, articulating spacers fulfill the goals of the interim construct during two-stage exchange which is to enhance eradication of the infecting organism through drug