Abstract. Background. Conventional TKR aims for neutral mechanical alignment which may result in a smaller lateral distal
Introduction. Oriental people habitually adopt formal sitting and squatting postures, the extreme flexion of the knees allowing of this. The influence exercised by pressure and posture are, therefore, found at the posterior side of knee joint. However, we don't have many report about articular cartilage of posterior
Juvenile Osteochondritis dissecans (JOCD) in humans and subchondral cystic lesions (SCL) in horses (also termed radiolucencies) share similarities: they develop in skeletally immature individuals at the same location in the medial
Full thickness cartilage defects of the
Introduction:. Unicompartmental knee arthroplasty has been shown to have lower morbidity, quicker rehabilitation and more normal kinematics compared to conventional TKA, but subchondral defects, or severe osteoarthritic changes, of the medial compartment may complicate component positioning. Successful UKA in these patients requires proper planning and exact placement of the components to ensure adequate and stable fixation and proper postoperative kinematics. This study presents a series of three patients with spontaneous osteonecrosis of the knee receiving a UKA with CT-based haptic robotic guidance. Methods:. This series includes two females and one male with spontaneous osteonecrosis of the medial
High tibial osteotomy is a common procedure to treat symptomatic osteoarthritis of the medial compartment of the knee with varus alignment. This is achieved by overcorrecting the varus alignment to 2–6° of valgus. Various high tibial osteotomy techniques are currently used to this end. Common procedures are medial opening wedge and lateral closing wedge tibial osteotomies. The lateral closing wedge technique is a primary stable correction with a high rate of consolidation, but has the disadvantage of bone loss and change in tibial condylar offset. The medial opening wedge technique does not result in any bone loss but needs to be fixated with a plate and may cause tibial slope and medial collateral ligament tightening. The purpose of this article is to examine correlation between femoral rotational angle and subjective satisfaction of high tibial osteotomy outcome of the range of motion of knee joint.Background
Purpose
Knee arthroscopy is typically approached from the anterior, posteromedial and posterolateral portals. Access to the posterior compartments through these portals can cause iatrogenic cartilage damage and create difficulties in viewing the structures of the posterior compartments. The purpose of this study was to assess the feasibility of needle arthroscopy using direct posterior portals as both working and visualising portals. For workability, the needle scope was inserted advanced from anterior between the cruciate ligament bundle and the lateral wall of the medial
This study was performed at Assiut University, Assiut, Egypt. Anterior distal femoral hemiepiphysiodesis (ADFH) using intra-articular plates for the correction of paediatric fixed knee flexion deformities (FKFD) has two main documented complications: postoperative knee pain and implant loosening. This study describes a biomechanical analysis and a preliminary report of a novel extra-articular technique for ADFH. Sixteen femoral sawbones were osteotomized at the level of the distal femoral physis and fixed by rail frames to allow linear distraction simulating longitudinal growth. Each sawbone was tested twice: first using the conventional technique with medial and lateral parapatellar eight plates (group A) and then with the plates inserted in the proposed novel location at the most anterior part of the medial and lateral surfaces of the
Objectives. Articular cartilage damage is a primary outcome of pre-clinical and clinical studies evaluating meniscal and cartilage repair or replacement techniques. Recent studies have quantitatively characterized India Ink stained cartilage damage through light reflectance and the application of local or global thresholds. We develop a method for the quantitative characterisation of inked cartilage damage with improved generalisation capability, and compare its performance to the threshold-based baseline approach against gold standard labels. Methods. The Trainable WEKA Segmentation (TWS) tool (Arganda-Carreras et al., 2017) available in Fiji (Rueden et al., 2017) was used to train two separate Random Forest classifiers to automatically segment cartilage damage on ink stained cadaveric ovine stifle joints. Gold standard labels were manually annotated for the training, validation and test datasets for each of the femoral and tibial classifiers. Each dataset included a sample of medial and lateral
Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model.
INTRODUCTION. In living normal knee the lateral
Introduction. Robotic TKA allows for quantifiable precision performing bone resections for implant realignment within acceptable final component and limb alignments. One of the early steps in this robotic technique is after initial exposure and removal of medial and lateral osteophytes, a “pose-capture” is performed with varus and valgus stress applied to the knee in near full extension and 90° of flexion to assess gaps. Component alignment adjustments can be made on the preoperative plan to balance the gaps. At this point in the procedure any posterior osteophytes will still be present, which could after removal change the flexion and extension gaps by 1–3mm. This must be taken into consideration, or changes in component alignment could result in over-correction of gaps can occur. Objective. The purpose of this study was to identify what effect the posterior osteophyte's size and location and their removal had on gap measurements between pose-capture and after bone cuts are made and gaps assessed during implant trialing. Methods. This was a retrospective, single center cohort study comparing 100 robotic-assisted TKAs. Preoperative computer tomography was assessed for the presence, size and location of posterior osteophytes. Robotic-assessed gaps at pose capture and trialing were collected. Paired t-tests, independent t-tests and Pearson's correlation were used to examine this relationship. Results. Posterior osteophytes were present in 87% of cases with 59.3% isolated to the posterior medial
Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine
With the success of the medial parapatellar approach (MPA) to total knee arthroplasty (TKA), current research is aimed at reducing iatrogenic microneurovascular and soft tissues damage to the knee. In an effort to avoid disruption to the medial structures of the knee, we propose a novel quadriceps-sparing, subvastus lateralis approach (SLA) to TKA. The aim of the present study is to compare if a SLA can provide adequate exposure of the internal compartment of the knee while reducing soft tissue damage, compared to the MPA. Less disruption of these tissues could translate to better patient outcomes, such as reduced post-operative pain, increased range of motion, reduced instances of patellar maltracking or necrosis, and a shorter recovery time. To determine if adequate exposure could be achieved, the length of the skin incision and perimeter of surgical exposure was compared amongst 22 paired fresh-frozen cadaveric lower limbs (five females/six males) which underwent TKA using the SLA or MPA approach. Additionally, subjective observations which included the percent of visibility of the
Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral
Background. The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms in order to replicate the functionality and stability provided by the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) in the native knee. Recently (2012), a second generation BCS design has introduced femur and tibial bearing modifications that are intended to delay lateral
The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and minimally clinically important differences between the revision (M=61.1/100, SD=20.4) and primary groups (M=76.0/100, SD=18.9), (p < 0 .05). Mean two-year scores for revision patients with repair of the medial (M=59.4/100, SD=21.7) or lateral meniscus (M=59.4/100, SD=23.6), partial medial meniscectomy (M=59.7/100, SD=20), grade three or four osteoarthritis (M=55.9/100, SD=19.5), and medial
Introduction. The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms to reproduce the functionality and stability provided by the anterior cruciate ligament and posterior cruciate ligament in the native knee. The anterior cam-post mechanism provides stability in full extension and early flexion (≤20°) while the posterior cam-post mechanism prevents anterior sliding of the femur during deeper flexion (≥60°). Recently (2012), a second generation BCS design introduced more normal shapes to the femur and tibial bearing geometries that provides delayed lateral
Introduction. Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on kinematics in TKA. Materials and Methods. This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with femoral arthroplasty only (S1), and thereafter sequentially; medial half tibial resection with spacer (S2), ACL cut (S3), tibial arthroplasty (S4), release of the dMCL (S5), and finally, release of the POL (S6). The same examiner applied all external loads of 10 N-m valgus and 5 N-m internal and external rotation torques at each flexion angle and for each cut state. The AP locations of medial and lateral condyles were determined as the lowest point on each
Kinematics of the knee change during the full range of flexion [1]. The lateral