Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 32 - 32
17 Nov 2023
Warren J Canden A Farndon M Brockett C
Full Access

Abstract. Objectives. The aim of this work was to compare the different techniques and the different fluid permeability of the tissue following each technique through assessing the flow of radiopaque contrast agent using μCT image analysis and 3D modelling. Methods. Donated human tali specimens (n=12) were prepared through creating a 10mm diameter chondral defect in three different regions of each talus. Each region then underwent one of three surgical techniques: 1) Fine wire drilling, 2) Nanofracture or 3) Microfracture, equidistant sites in each defect to ensure even distribution. Each region then had an addition of 0.1 ml radiopaque contrast agent (Omnipaque™ 300), imaged using a clinical μCT scanner (SCANCO Medical AG, 73.6 μm resolution). Each μCT scan was segmented using Slicer 3D software (The Slicer Community, 2023 3D Slicer (5.2.2)). The segmentation package was used to segment the bone and contrast agent regions in each different surgical site of each sample. Each defect site was created into a cylinder and the ratio of segmented pixels of contrast agent against bone. Results. The μCT analysis indicated that across the 12 samples, eight nanofracture regions demonstrated flow of the contrast agent either to the depth of the fracture site or deeper. Some lateral flow was also observed in these sites. eight microfracture regions demonstrated that the flow of the contrast agent was localised to the fracture site and a preferential flow laterally. In only one sample, did a fine wire drilling region demonstrate any fluid flow. In this sample, contrast agent had permeated through the drilling site to the bottom and some sub-site permeation was observed. However, in all samples that showed no permeation of contrast agent through the fracture site, a layer of contrast agent on the chondral surface or minor permeation through to the sub-chondral surface. Segmentation of each sample site showed a significant increase (n=12, p<0.05) in fluid flow of the contrast agent in the nanofracture sites (11%) compared to microfracture (5%) and fine wire drilling (2%). Conclusions. Nanofracture showed significantly improved fluid permeability throughout the surrounding trabecular structure, when compared to microfracture and fine wire drilling. Microfracture appears to allow some fluid flow, but only confined to the immediate area around the fracture site, while fine wire drilling appears to allow a comparably small amount, if not no fluid flow through the surrounding trabecular tissue. This conclusion is reinforced by previous literature that concluded the damage to the structure of the trabecular tissue is reduced when using nanofracture, compared to the other two techniques. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 119 - 119
4 Apr 2023
Jalal M Wallace R Peault B Simpson H
Full Access

To test and evaluate the effectiveness of local injection of autologous fat-derived mesenchymal stem cells (MSCs) into fracture site to prevent non-union in a clinically relevant model. 5 male Wistar rats underwent the same surgical procedure of inducing non-union. A mid-shaft tibial osteotomy was made with 1mm non-critical gap. Periosteum was stripped around the two fracture ends. Then, the fracture was fixed by ante-grade intramedullary nail. The non-critical gap was maintained by a spacer with minimal effect on the healing surface area. At the same surgical time, subcutaneous fat was collected from the ipsilateral inguinal region and stem cells were isolated and cultured in vitro. Within three weeks postoperatively, the number of expanded stem cells reached 5×10. 6. and were injected into the fracture site. Healing was followed up for 8 weeks and the quality was measured by serial x-rays, microCT, mechanical testing and histologically. Quality of healing was compared with that of previously published allogenic, xenogeneic MSCs and Purified Buffered Saline (PBS) controls. All the five fractures united fully after 8 weeks. There was a progressive increase in the callus radiopacity during the eight-week duration, the average radiopacity in the autologous fat-MSC injected group was significantly higher than that of the allogeneic MSCs, xenogeneic MSCs and the control group, P < 0.0001 for treatment, time after injection, and treatment-time interaction (two-way repeated measure ANOVA). MicroCT, mechanical testing and histology confirmed radiological findings. The autologous fat-MSCs are effective in prevention of atrophic non-union by stimulation of the healing process leading to a solid union. The quality and speed of repair are higher than those of the other types of cell transplantation tested


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 85 - 85
2 Jan 2024
Frost M Tirta M Rahbek O Rytoft L Ding M Shen M Duch K Kold S
Full Access

Healing after bone fracture is assessed by frequent radiographs, which expose patients to radiation and lacks behind biological healing. This study aimed to investigate whether the electrical impedance using electrical impedance spectroscopy correlated to quantitative scores of bone healing obtained from micro-CT and mechanical bending test. Eighteen rabbits were subjected to tibial fracture that was stabilized with external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the fracture site. Impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz. The animals were divided into three groups with different follow-up time: 1, 3 and 6 weeks for micro-CT (Bone volume/tissue volume (BV/TV, %)) and mechanical testing (maximum stress (MPa), failure energy (kJ/cm3), young modulus (Mpa)). There was a statistically significant correlation between last measured impedance at 5 Hz frequency immediately prior to euthanasia and BV/TV of callus (−0.68, 95%CI: (−0.87; −0.31)). Considering the mechanical testing with three-point bending, no significant correlation was found between last measured impedance at 5 Hz frequency immediately prior to euthanasia and maximum stress (−0.35, 95%CI: (−0.70; 0.14)), failure energy (−0.23, 95%CI: (−0.63; 0.26)), or young modulus (−0.28, 95%CI: (−0.66; 0.22)). The significant negative correlation between impedance and BV/TV might indicate that impedances correlate with the relative bone volume in the callus site. The lack of correlation between impedance and mechanical parameters when at the same time observing a correlation between impedance and days since operation (0-42 days), might indicate that the impedance can measure biological changes at an earlier time point than rough mechanical testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking. For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01. From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 50 - 50
1 Nov 2021
Rytoft L Frost MW Rahbek O Shen M Duch K Kold S
Full Access

Introduction and Objective. Home-based monitoring of fracture healing has the potential of reducing routine follow-up and improve personalized fracture care. Implantable sensors measuring electrical impedance might detect changes in the electrical current as the fracture heals. The aim was to investigate whether electrical impedance correlated with radiographic fracture healing. Materials and Methods. Eighteen rabbits were subjected to a tibial osteotomy that was stabilized with an external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the osteotomy site. Transverse electrical impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz using an Analog Discovery 2 Oscilloscope with Impedance Analyzer. Biweekly x-rays were taken and analyzed blinded using a modified anterior-posterior (AP) radiographic union score of the tibia (RUST). Each animal served as its own control by performing repeated measurements from time zero until the end of follow-up. Results. At 5 Hz measurements, a linear mixed model revealed an average impedance at day zero of 10670 +/− 272 Ohm (p<0.001) and a change in impedance from day 0 to day 7 of −3330 +/− 152 (p<0.001). The slope from day 0–7 was estimated as −548.6 +/− 26 (p<0.001) and was steeper than the slope after day 7 which was estimated to −85.6 +/− 4 (p<0.001). This indicates that the impedance decreased quicker before day 7 and slower after day 7. The coefficient of variation for difference between RUST scores, from double intra-rater measurements of 15 radiographs with a minimum of 22 days between, was 1.3. Spearman's correlation coefficient between impedance and RUST score at the 5 Hz was −0.75 (p<0.001). Conclusions. This osteotomy model showed that the electrical impedance can be measured in vivo at a distance from the fracture site with a consistent change in impedance over time. This is the first study to demonstrate a significant correlation between increasing radiographic union score and decreasing impedance. Further studies are warranted to investigate how these new and important results can further be translated into larger animal studies


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 87 - 87
1 Dec 2020
Frost MW Rytoft LA Shen M LI Y Zhekov SS Ghaffari A Kr⊘yer BK Pedersen GF Rahbek O Kold S
Full Access

In 2019, Lin et al. published a proof-of-concept study of electrical impedance spectroscopy as a simple and low-cost method to characterize progression of fracture repair (Lin et al., Sci Rep 2019). However, the electrical impedance sensors were placed in the fracture site which may impair the transfer to clinical use. To further explore the concept of monitoring fracture healing by electrical impedance spectroscopy, we established a tibial fracture model in the rabbit where sensors are positioned in proximity to the fracture site but without being placed in the fracture site. The aim of this pilot study was to explore whether distinct patterns of electrical impedance would evolve as tibial fractures in rabbits were evaluated until radiographic signs of healing. Approval was granted from the Inspectorate of the Animal Experimentation under the Danish Ministry of Justice. Four rabbits were anaesthetized, and in each rabbit a tibial osteotomy was made and stabilized by an external fixator. Electrical impedance was measured immediately postoperative and hereafter daily until euthanization after 3 weeks. Recordings were obtained within a wide frequency range (10 Hz to 1 MHz) from an inner electrode placed into the medullary canal and an outer electrode placed extracortical on the lateral with a distance of 3 mm to the defect. A similar pattern of electrical impedance over time was observed in the four rabbits. During the very early stages of fracture healing, an initial fluctuation in electrical impedance occurred. However, after 10 days the curves revealed a steady daily increase in electrical impedance. The first radiological signs of bone healing were detected after 14 days and progressed in all four rabbits in accordance with increments in the electrical impedance until termination of the pilot study after 21 days. Consistent electrical impedance patterns were detected during bone healing in a pilot study of four rabbits. Further research is needed to explore whether the presented method of electrical impedance measurements can be used to monitor bone healing over time


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 99 - 99
1 Mar 2021
Jalal M Wallace R Peault B Simpson AH
Full Access

Abstract. Objectives. The role of MSCs in enhancing healing has been examined with allogeneic and xenogeneic cells in transplantation models. However, certain factors might limit the use of allogeneic cells in clinical practice, (e.g. disease transmission, ethical issues and patient acceptance). Adipose tissue represents an abundant source for autologous cells. The aim of this study was to evaluate adipose-derived autologous cells for preventing non-union. Methods. Adults male Wistar rats (n=5) underwent a previously published surgical procedure known to result in non-union if no treatment is given. This consisted of a mid-shaft tibial osteotomy with peri/endosteal stripping stabilized by intramedullary nail fixation with a 1mm gap maintained by a spacer shown to have minimal effect on fracture healing. During the same operation, ipsilateral inguinal subcutaneous fat was harvested and processed for cell isolation. After three weeks in culture, the cell number reached 5 million and were injected into the fracture site. Results. At the end of the experiment, all tibias (injected with autologous fat-MSCs) developed union, 5/5. These were compared with a control group injected with PBS (n=4) and with allogenic (n=5) and xenogeneic (n=6) cell transplantation groups. The amount of callus was noticeably large in the autologous cell group and the distal-callus index was significantly greater than that of the other groups, P-value < 0.05, unpaired t-test, corrected by Benjamini & Hochberg. Conclusion. We report a novel method for autologous MSCs implantation to stimulate fracture healing. Local injection of autologous fat-MSCs into the fracture site resulted in a solid union in all the tibias with statistically significantly greater amounts of callus. Xenogeneic Bone Marrow and Fat derived MSCs have previously been shown to have similar effects (Tawonsawatruk et al. 2014), we show here that autologous MSCs were significantly better than the xenogenic MSCs at producing union. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 22 - 22
1 Mar 2021
Makelov B Silva J Apivatthakakul T Gueorguiev B Varga P
Full Access

Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3). From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for callus formation with longitudinal strains at the fracture site not exceeding 10%, thus providing appropriate relative stability for secondary bone healing under partial weightbearing during the early postoperative phase


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 54 - 54
1 Dec 2020
Kacmaz IE Egeli E Basa CD Zhamilov V
Full Access

Proximal femur fractures are common in the elderly population. The aim of this study was to determine the relationship between fracture type and proximal femoral geometric parameters. We retrospectively studied the electronic medical records of 85 elderly patients over 60 years of age who were admitted to the orthopedic department with hip fractures between January 2016 and January 2018 in a training and research hospital in Turkey. Age, fracture site, gender, implant type and proximal femoral geometry parameters (neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Patients with femoral neck fractures and femur intertrochanteric fractures were divided into two groups. The relationship between proximal femoral geometric parameters and fracture types was examined. SPSS 25.0 (IBM Corparation, Armonk, New York, United States) program was used to analyze the variables. Independent samples t test was used to compare the fracture types according to NSA, FHD, FND and FSD variables. A statistically significant difference was found in FSD (p=0,002) and age (p=0,019). FSD and age were found to be greater in intertrochanteric fractures than neck fractures. Gender, site, CEA, FNAL, HAL, NSA, FHD and FND parametres were not significantly different. In the literature, it is seen that different results have been reached in different studies. In a study conducted in the Chinese population, a significant difference was found between the two groups in NSA, CEA and FNAL measurements. In a study conducted in the Korean population, a significant difference was found only in NSA measurements. The FSD is generally associated with bone mineral densitometry in the literature and has been shown to be a risk factor for fracture formation. However, a study showing that there is a relationship between FSD and fracture type is not available in the literature. In this study; FSD was found to be higher in intertrochanteric fractures (p = 0.002). However, for the clinical significance of this difference, we think that larger patient series and biomechanical studies are needed


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 132 - 132
1 Nov 2021
Chalak A Singh P Singh S Mehra S Samant PD Shetty S Kale S
Full Access

Introduction and Objective. Management of gap non-union of the tibia, the major weight bearing bone of the leg remains controversial. The different internal fixation techniques are often weighed down by relatively high complication rates that include fractures which fail to heal (non-union). Minimally invasive techniques with ring fixators and bone transport (distraction osteogenesis) have come into picture as an alternative allowing alignment and stabilization, avoiding a graduated approach. This study was focused on fractures that result in a gap non-union of > 6 cm. Ilizarov technique was employed for management of such non-unions in this case series. The Ilizarov apparatus consists of rings, rods and kirschner wires that encloses the limb as a cylinder and uses kirschner wires to create tension allowing early weight bearing and stimulating bone growth. Ilizarov technique works on the principle of distraction osteogenesis, that is, pulling apart of bone to stimulate new bone growth. Usually, 4–5 rings are used in the setup depending on fracture site and pattern for stable fixation. In this study, we demonstrate effective bone transport and formation of gap non-union more than 6 cm in 10 patients using only 3 rings construct Ilizarov apparatus. Materials and Methods. This case study was conducted at Dr. D. Y. Patil Medical Hospital, Navi Mumbai, Maharashtra, India. The study involved 10 patients with a non-union or gap > 6 cm after tibial fracture. 3 rings were used in the setup for the treatment of all the patients. Wires were passed percutaneously through the bone using a drill and the projecting ends of the wires were attached to the metal rings and tensioned to increase stability. The outcome of the study was measured using the Oxford Knee scoring system, Functional Mobility Scale, the American Foot and Ankle Score and Visual Analog Scale. Further, follow up of patients was done upto 2 years. Results. All the patients demonstrated good fixation as was assessed clinically and radiologically. 9 patients had a clinical score of > 65 which implied fair to excellent clinical rating. The patients showed good range of motion and were highly satisfied with the treatment as measured by different scoring parameters. Conclusions. In this case study, we demonstrate that the Ilizarov technique using 3 rings is equally effective in treating non-unions > 6 cm as when using 4–5 rings. Obtaining good clinical outcome and low complication rate in all 10 patients shows that this modified technique can be employed for patients with such difficulties in the future


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 24 - 24
1 Nov 2021
Gueorguiev B Zderic I Pastor T Gehweiler D Richards G Knobe M
Full Access

Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were biomechanically tested under non-destructive quasi-static and destructive progressively increasing combined cyclic axial and torsional loading in internal rotation, with monitoring by means of optical motion tracking. Results. Initial axial stiffness and torsional stiffness in internal and external rotation for straight double plating (548.1 ± 134.2 N/mm, 2.69 ± 0.52 Nm/° and 2.69 ± 0.50 Nm/°) was significantly higher versus helical double plating (442.9 ± 133.7 N/mm, 2.07 ± 0.32 Nm/° and 2.16 ± 0.22 Nm/°), p≤0.04. Initial interfragmentary axial displacement and flexural rotation under 500 N static loading were significantly smaller for straight plating (0.11 ± 0.14 mm and 0.21 ± 0.10°) versus helical plating (0.31 ± 0.14 mm and 0.68 ± 0.16°), p<0.01. However, initial varus deformation under this loading remained not significantly different between the two fixation methods (straight: 0.57 ± 0.23°, helical: 0.75 ± 0.34°), p=0.08. During dynamic loading, within the course of the first 4000 cycles the movements of the distal fragment in flexion were significantly bigger for helical over straight plating (1.03 ± 0.33° versus 0.40 ± 0.20°), p<0.01. However, no significant differences were observed between the two fixation methods in terms of varus, internal rotation, axial and shear displacements at the fracture site, and number of cycles to failure. Conclusions. Augmented lateral plating of unstable distal femoral fractures with use of supplemental helically shaped medial plate was associated with more elastic bone-implant construct behavior under static and dynamic loading compared to straight double plating. Both fixation methods resulted in comparable number of cycles to failure. From a biomechanical perspective, the more elastic helical double plating may be considered as useful alternative to straight plating, potentially reducing stress risers at the distal bone-implant interface due to its ameliorated damping capacities


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2021
Zderic I Caspar J Blauth M Weber A Koch R Stoffel K Finkemeier C Hessmann M Gueorguiev B
Full Access

Introduction and Objective. Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter. The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading. Materials and Methods. The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking. Results. Initial nail toggling of the distal tibia fragment in group 5 was significantly lower as compared with group 3 in varus (p=0.04) or with groups 2 and 4 in flexion (p≤0.02). In addition, the toggling in varus was significantly lower in group 1 versus group 4 (p<0.01). Moreover, during dynamic loading, within the course of the first 10,000 cycles the movements of the distal fragment in terms of varus, flexion, internal rotation, as well as axial and shear displacements at the fracture site, were all significantly lower in group 5 compared with group 4 (p<0.01). Additionally, group 5 demonstrated significantly lower values for flexion versus groups 2 and 3 (p≤0.04), for internal rotation versus group 1 (p=0.03), and for axial displacement versus group 3 (p=0.03). A trend to significantly lower values was detected in group 5 versus group 1 for varus, flexion and shear displacement – with p ranging between 0.05 and 0.07 – and versus group 3 for shear displacement (p=0.07). Cycles to failure were highest in group 5 with a significant difference to group 4 (p<0.01). Conclusions. From a biomechanical perspective, the novel angular stable intramedullary nail concept with integrated PEEK inlays and low-profile screws provides ameliorated resistance against nail toggling and loss of reduction under static and dynamic loading compared with other commercially available intramedullary nails used for fixation of unstable distal tibia fractures


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 133 - 138
1 Jan 2007
Oe K Miwa M Sakai Y Lee SY Kuroda R Kurosaka M

We isolated multilineage mesenchymal progenitor cells from haematomas collected from fracture sites. After the haematoma was manually removed from the fracture site it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem-cell-related markers CD29, CD44, CD105 and CD166, and were negative for the haemopoietic markers CD14, CD34, CD45 and CD133 similar to bone-marrow-derived mesenchymal stem cells. In the presence of lineage-specific induction factors the adherent cells could differentiate in vitro into osteogenic, chondrogenic and adipogenic cells. Our results indicate that haematomas found at a fracture site contain multilineage mesenchymal progenitor cells and play an important role in bone healing. Our findings imply that to enhance healing the haematoma should not be removed from the fracture site during osteosynthesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 111 - 111
1 Mar 2021
Tohidnezhad M Kubo Y Lichte P Roch D Heigl T Pour N Bergmann C Fragoulis A Gremse F Rosenhein S Jahr H
Full Access

The large bone defects with high risk of delayed bone union and pseudoarthrosis remain significant clinical challenge. Aim of the present study was the investigation of the critical size fracture healing process in transgenic mice using a novel beta-TCP scaffold. The luciferase transgenic mice strains (BALB/C-Tg(NF-kappaB-RE-luc)-Xen) and FVB/N-Tg(Vegfr2-luc)-Xen were used. Critical size fracture on femur was performed and stabilized using external fixation (RISystem). The fracture was bridged with a synthetic scaffold with and without Strontium. In consequence, the expression levels of NF-kappaB and VEGFR2 could be monitored in a longitudinal fashion using the Xenogen imaging system for two months. Animals were euthanized, serial section of femur were prepared, and the fracture sites were histologically examined. Sr reduced inflammation in the early phase of healing (15th days), but it was increased in the late healing stage. The level of VEGFR2 activity increases in the Sr doped beta-TCP group at the 15th day, the luciferase activity starts to decrease in this group and show significantly less activity compared to other groups in the second half. In the group without scaffold a connective tissue formation were observed. In both, beta-TCP and beta-TCP+Sr, the connection of newly formed tissue within integrated canals in scaffold was visible. Tissue formation in beta-TCP+Sr group was significantly higher than in the beta-TCP group, whereas the percentage of osseous tissue in relation to the newly formed tissue was in beta-TCP scaffold much more than in beta-TCP+ Sr groups. This study presents the first data regarding VEGFR2 and NF-kappB and angiogenesis activity profiles during fracture healing. The collected longitudinal data reduces the number of experimental animals in the study. Addition of strontium in scaffolds influenced the inflammation in different stage of the healing. This effect might influence the healing process and may prove to be advantageous for osteoporosis fracture healing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 94 - 94
1 Mar 2021
Harrison A
Full Access

Abstract. Objectives. Review the evidence of low intensity pulsed ultrasound (LIPUS) for fracture non-union treatment and the potential to treat fractures in patients with co-morbidities at risk of fracture non-union. Methods. Data was gathered from both animal and human studies of fracture repair to provide an overview of the LIPUS in bone healing applications to provide in-depth evidence to substantiate the use in treatment of non-union fractures and to propose a scientific rational to develop a clinical development programme. Results. LIPUS is an effective method for treating fracture non-union, with most studies showing heal rates in the mid 80%. In the UK NICE has published MTG-12 guidance for non-union treatment, which demonstrates that LIPUS is an effective and cost effective method as an alternative to surgery to treat non-union fractures. Basic science studies and evaluation of clinical trial data has led to the understanding that LIPUS can mitigate co-morbidities related to failure of bone healing such as diabetes, advancing age and tobacco use. Future clinical trials will evaluate the use of LIPUS in acute fractures in patients with high risk of low bone healing capacity to prevent the development of a non-union. As with all medical treatments, LIPUS for fracture repair needs to be used appropriately, with poorly fixed fractures or large fracture gaps, being unsuitable for LIPUS treatment. In addition, considerations such as targeting the fracture site in deep-seated bones and clinician / patient engagement to ensure good compliant usage are vital factors to ensure good clinical outcomes. Conclusion. Using basic science research, a thorough knowledge of the mechanism of action has been established, which has elucidated that co-morbidities related to the development of fracture non-union can be mitigated by the LIPUS technology. A pragmatic clinical trial in the United States is currently ongoing to test these hypothesises clinically. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 8 - 8
1 Jan 2019
Jalal M Simpson H Wallace R Peault B
Full Access

In atrophic non-union models, a minimally invasive technique is used to deliver stem cells into the fracture site via percutaneous injection. This technique is significantly affected by a backflow leakage and the net number of cells might be reduced. The Z-track method is a technique used in clinical practice for intramuscular injections to prevent backflow leakage. We evaluated the potential of the Z-track injection technique for preventing cell loss in non-union models by determining the behaviour of observable marker fluids. Firstly, toluene blue stain was used as an injection material to allow visual detection of its distribution. Rat's cadaver legs were used and tibias were kept unbroken to ensure intact skin and overlying soft tissue. Technique includes pulling the skin over the shin of tibia towards the ankle and injection of the dye around the mid-shaft. The needle was then partially pulled back, the skin was returned to its normal position and a complete extraction of the needle was followed. Secondly, a mixture of contrast material and toluene blue was used to allow direct visual and radiological detection of the injected material into the fracture site. Ante-grade nailing of tibia via tibial tuberosity was carried out followed by a 3 point closed fracture. Injection was performed into the fracture gap similarly to the steps above. X-rays were taken to visualise the location and distribution of the injected material. Observation revealed no blue stain could be detected over the skin, X -rays revealed that the radiopaque dye remained around the tibia with no escape of the material into the superficial layers or onto the skin surface. Therefore, the number of cells delivered and maintained at a target site could be increased by the Z-track method and therefore, the therapeutic benefit of stem cell injections could be optimised with this simple technique


There is a growing trend towards using pre-clinical models of atrophic non-union. This study investigated different fixation devices, by comparing the mechanical stability at the fracture site of tibia bone fixed by either intramedullary nail, compression plate or external fixator. 40 tibias from adult male Wistar rats' cadavers were osteotomised at the mid-shaft and a gap of 1 mm was created and maintained at the fracture site to simulate criteria of atrophic non-union model. These were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with external fixator. Tibia was harvested by leg disarticulation from the knee and ankle joints, the soft tissues were carefully removed from the leg, and tibias were kept hydrated throughout the experiment. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4). Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant. Axial load to failure data and stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices, however there was no statistically significant difference axially between the nail thicknesses. In bending, load to failure revealed that 18G nails are significantly stronger than 20G. We concluded that 18G nail is superior to the other fixation devices, therefore it has been used for in-vivo experiments to create a novel model of atrophic non-union with stable fixation