Advertisement for orthosearch.org.uk
Results 1 - 20 of 697
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 2 | Pages 193 - 203
1 Feb 2025
Groven RVM Mert Ü Greven J Horst K Joris V Bini L Poeze M Blokhuis TJ Huber-Lang M Hildebrand F van Griensven M

Aims. The aims of this study, using a porcine model of multiple trauma, were to investigate the expression of microRNAs at the fracture site, in the fracture haematoma (fxH) and in the fractured bone, compared with a remote unfractured long bone, to characterize the patterns of expression of circulating microRNAs in plasma, and identify and validate messenger RNA (mRNA) targets of the microRNAs. Methods. Two multiple trauma treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). For this study, fxH, fractured bone, unfractured control bone, plasma, lung, and liver samples were harvested. MicroRNAs were analyzed using quantitative real-time polymerase chain reaction arrays, and the identified mRNA targets were validated in vivo in the bone, fxH, lung, and liver tissue. Results. MicroRNA expression was associated with the trauma treatment strategy and differed depending on the type of sample. In the ETC group, a more advanced fracture healing response, as reflected by the expression of osteogenic microRNAs, was seen compared with the DCO group. DCO treatment resulted in a more balanced immune response in the systemic circulation as represented by significant upregulations of several anti-inflammatory microRNAs. The in vivo validation of the abundance of putative mRNA targets reflected the levels of microRNAs which were identified. Conclusion. Local and systemic microRNA patterns of expression were identified, specific for the treatment strategy in multiple trauma, which corresponded with the expression of mRNA at the fracture site and in target organs. These findings match clinical observations and offer insights into the cellular communication which may underlie the effects of using different surgical strategies in patients with multiple trauma, both locally and systemically. We also identified a systemic involvement of microRNAs in multiple trauma which may include distant cellular communication between injured tissues. Further research may further describe the temporospatial role of circulating microRNAs after multiple trauma, their potential role in communication between organs, and prospective therapeutic applications. Cite this article: Bone Joint J 2025;107-B(2):193–203


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVI | Pages 79 - 79
1 Jun 2012
El-Malky M Barrett C De Matas M Pillay R
Full Access

Purpose. The treatment of C2 fractures with collar, halo or surgery can all be justified depending on the patient. In our unit, primary treatment is with a halo: in a previous study presented at BASS we found an 85% fusion rate. In a follow on study, we wished to assess the outcome in those patients who underwent surgical treatment. Methods. The discharge logbook was examined retrospectively to identify patients who had posterior instrumentation for C2 fractures from 2008-2010 inclusive. Discharge summaries, clinic letters and radiology images/reports from PACS were analysed to obtain data regarding primary treatment, outcome, necessity for delayed treatment and radiological evidence of union. Results. Seven patients were identified who had surgery for C2 fracture. All 7 patients were treated with C1 and C2 lateral mass screws. In two of these patients additional lateral mass screws were inserted at C3. Due to patient preference, three of the seven patients underwent operative fixation without prior treatment in a halo. All three patients had evidence of bony union at the fracture site on subsequent radiological follow up. The remaining four patients were initially treated in a halo and had delayed surgery. After surgery two of these four patients had radiological evidence of bony union at the fracture site, one remained non-united and one patient has not yet been fully assessed. Conclusions. In this small series, operative fixation for C2 fracture lead to bony union at the fracture site in 5 out of 6 cases where full follow up was available. Interestingly, bony union at the fracture site may be an achievable objective even when surgery has been delayed or is not the primary treatment


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 390 - 390
1 Jul 2008
Awad A Andrew J Williams C Hutchinson C
Full Access

Measurement of the rate of fracture healing is a major problem in fracture research. Bone mineral density (BMD) of fracture callus has been used as a measure of healing in diaphyseal fractures. However, metaphyseal fractures (especially in the elderly) are now the commonest type of fracture and are a significant public health problem. This study investigated whether measurement of BMD at the fracture site in the distal radius can be used as a measure of fracture healing. We recruited 28 patients who had sustained a dorsally displaced distal radial fracture which was deemed to require treatment by intrafocal wire fixation. All patients had acceptable correction of dorsal and radial angle at final x ray (3 months). Wrist function was measured using the Patient Rated Wrist Evaluation (PRWE – a validated outcome measure for use after distal radial fractures), grip strength,and range of motion. All measurements were made at 6, 12 and 26 weeks. BMD was measured at the fracture site (examining the BMD of the medullary bone at the fracture site after removal of wires), in the opposite wrist and the lumbar spine using QCT at 6 weeks after fracture. There was no correlation between fracture site BMD and BMD at the other wrist or the lumbar spine (r < 0.3). The BMD at the fracture site was higher than the BMD at the other wrist (mean 168 vs 70 HU; p< 0.001 paired T test). There was no relationship between fracture site BMD or the ratio of BMDs fracture site / normal wrist, and any of the functional assessments (proportion grip strength recovered, range of motion or PRWE (r < 0.3)). 15 of these patients underwent a second QCT at 12 weeks after fracture. There was no significant change in fracture site BMD between the first and second scan. These data indicate that fracture site BMD is unlikely to be a useful method of measuring metaphyseal bone healing. The increase in BMD at the fracture site was unexpected; possible explanations include impaction of bone or high BMD in woven bone (the relationship of which to bone stiffness is uncertain)


Bone & Joint Research
Vol. 14, Issue 3 | Pages 166 - 175
3 Mar 2025
Tateiwa D Nishida M Kodama J Hirai H Nakagawa S Ukon Y Takeyama K Yamamori N Hirano K Ikuta M Kitahara T Furuichi T Bun M Okada S Kaito T

Aims. Nonunion occurs when a fracture fails to heal permanently, often necessitating surgical intervention to stimulate the bone healing response. Current animal models of long-bone nonunion do not adequately replicate human pathological conditions. This study was intended as a preliminary investigation of a novel rat nonunion model using a two-stage surgical intervention, and to evaluate the efficacy of a selective prostaglandin E2 receptor 4 agonist (AKDS001) as a novel nonunion therapeutic agent compared with existing treatments. Methods. Initially, Sprague-Dawley rats underwent intramedullary Kirschner wire (K-wire) fixation of a femoral fracture with the interposition of a 2 mm-thick silicon disc. After three weeks, the silicon disc was removed, and the intramedullary K-wire was replaced with plate fixation while maintaining the 2 mm defect. Contrary to the control group (1) that received no treatment, the following therapeutic interventions were performed at injury sites after freshening: (2) freshening group: no grafting; (3) iliac bone (IB) group: IB grafting; (4) AKDS group: AKDS001-loaded microspheres (MS) combined with IB (0.75 mg/ml); and (5) bone morphogenetic protein (BMP) group: grafting of a BMP-2-loaded collagen sponge (10 μg; 0.10 mg/ml). After six weeks, micro-CT (μCT) and histological analysis was performed. Results. In the control group, the radiological union rate was 0%, and histological findings showed that fracture sites comprised fibrous scar tissue, resembling the histology of human nonunion. The union rates in the freshening, IB, AKDS, and BMP groups were 16.7%, 0%, 62.5%, and 50.0%, respectively. The AKDS group demonstrated a significantly higher union rate than the IB group (p = 0.026). μCT and histological analysis indicated that the quality of newly formed bone was superior in the AKDS group than in the BMP group. Conclusion. We developed a novel long-bone nonunion model. The co-therapy of AKDS001-MS and IB grafting presents a promising new treatment for nonunion. Cite this article: Bone Joint Res 2025;14(3):166–175


Bone & Joint Research
Vol. 10, Issue 11 | Pages 714 - 722
1 Nov 2021
Qi W Feng X Zhang T Wu H Fang C Leung F

Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. Methods. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme. Results. The bench test showed that a weight loading < 500 g did not affect the operation of experimental device. The compression test demonstrated that the stiffness of the device was sufficient to keep the uncontrollable motion between fracture ends, resulting from the rat’s daily activities, within 1% strain. In vivo results on 15 rats prove that the device works reliably, without overburdening the experimental animals, and provides standardized micromotion reproductively at the fracture site according to the set parameters. Conclusion. Our device was able to investigate the effect of micromotion parameters on fracture healing by generating standardized micromotion to small animal models. Cite this article: Bone Joint Res 2021;10(11):714–722


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 4 | Pages 746 - 747
1 Nov 1957
Duthie HL


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 2 | Pages 189 - 194
1 Mar 1983
Kent G Dodds R Klenerman L Watts R Bitensky L Chayen J

The aim of this study was to try to elucidate the increased susceptibility of the neck of femur to fracture. Quantitative polarised light microscopy has been applied to fresh, undecalcified sections of samples of bone taken from the site of fracture, in specimens taken at operation from patients with fractures of the femoral neck or osteoarthritic femoral heads or from the equivalent site from otherwise normal subjects at necropsy. In all 21 specimens of fractured necks of femur, but in none of the other specimens, relatively large crystals (up to 2.5 X 0.5 micrometres) were found close to the site of fracture; the properties of these crystals were compatible with their being apatite. Measurement of the natural birefringence of the collagen showed no difference in the orientation of the collagen in all three types of specimen. However, the orientation of acidic glycosaminoglycans, measured by the birefringence of alcian blue bound to these moieties, was 45 per cent lower in the specimens from fractured necks of femur than in the other specimens, even though the total content of acidic glycosaminoglycans was unchanged. Although the decreased orientation was most marked close to the site of fracture, it was still apparent 15 millimetres from that site. These changes were unlikely to be simply the sequelae of fracture since they were not found in traumatic fractures of other bones. Thus it is conceivable that changes in the orientation of the ground substance allow formation of relatively large crystals of apatite and that such crystals, in the microcrystalline mass of apatite, are the cause of the increased fragility of such bones


Bone & Joint Open
Vol. 3, Issue 5 | Pages 359 - 366
1 May 2022
Sadekar V Watts AT Moulder E Souroullas P Hadland Y Barron E Muir R Sharma HK

Aims

The timing of when to remove a circular frame is crucial; early removal results in refracture or deformity, while late removal increases the patient morbidity and delay in return to work. This study was designed to assess the effectiveness of a staged reloading protocol. We report the incidence of mechanical failure following both single-stage and two stage reloading protocols and analyze the associated risk factors.

Methods

We identified consecutive patients from our departmental database. Both trauma and elective cases were included, of all ages, frame types, and pathologies who underwent circular frame treatment. Our protocol is either a single-stage or two-stage process implemented by defunctioning the frame, in order to progressively increase the weightbearing load through the bone, and promote full loading prior to frame removal. Before progression, through the process we monitor patients for any increase in pain and assess radiographs for deformity or refracture.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 32 - 32
17 Nov 2023
Warren J Canden A Farndon M Brockett C
Full Access

Abstract. Objectives. The aim of this work was to compare the different techniques and the different fluid permeability of the tissue following each technique through assessing the flow of radiopaque contrast agent using μCT image analysis and 3D modelling. Methods. Donated human tali specimens (n=12) were prepared through creating a 10mm diameter chondral defect in three different regions of each talus. Each region then underwent one of three surgical techniques: 1) Fine wire drilling, 2) Nanofracture or 3) Microfracture, equidistant sites in each defect to ensure even distribution. Each region then had an addition of 0.1 ml radiopaque contrast agent (Omnipaque™ 300), imaged using a clinical μCT scanner (SCANCO Medical AG, 73.6 μm resolution). Each μCT scan was segmented using Slicer 3D software (The Slicer Community, 2023 3D Slicer (5.2.2)). The segmentation package was used to segment the bone and contrast agent regions in each different surgical site of each sample. Each defect site was created into a cylinder and the ratio of segmented pixels of contrast agent against bone. Results. The μCT analysis indicated that across the 12 samples, eight nanofracture regions demonstrated flow of the contrast agent either to the depth of the fracture site or deeper. Some lateral flow was also observed in these sites. eight microfracture regions demonstrated that the flow of the contrast agent was localised to the fracture site and a preferential flow laterally. In only one sample, did a fine wire drilling region demonstrate any fluid flow. In this sample, contrast agent had permeated through the drilling site to the bottom and some sub-site permeation was observed. However, in all samples that showed no permeation of contrast agent through the fracture site, a layer of contrast agent on the chondral surface or minor permeation through to the sub-chondral surface. Segmentation of each sample site showed a significant increase (n=12, p<0.05) in fluid flow of the contrast agent in the nanofracture sites (11%) compared to microfracture (5%) and fine wire drilling (2%). Conclusions. Nanofracture showed significantly improved fluid permeability throughout the surrounding trabecular structure, when compared to microfracture and fine wire drilling. Microfracture appears to allow some fluid flow, but only confined to the immediate area around the fracture site, while fine wire drilling appears to allow a comparably small amount, if not no fluid flow through the surrounding trabecular tissue. This conclusion is reinforced by previous literature that concluded the damage to the structure of the trabecular tissue is reduced when using nanofracture, compared to the other two techniques. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 9 - 9
1 Jun 2023
Kapoor D Condell R Kennedy N Bakhshayesh P
Full Access

Introduction. The management of open long bone fractures is well described and has been standardised through a number of well-established guidelines. However, there is no consensus regarding the application of local antibiotics into the open fracture site as a means of reducing infection rates. Materials & Methods. A systematic review and meta-analysis were undertaken as per PRISMA guidelines. PROSPERO Registration CRD42022323545. PubMed, EMBASE, Scopus and CENTRAL were the databases assessed. The Newcastle Ottawa Scale and the Rob 2 Tool were used to assess bias. A qualitative synthesis of all included studies and meta-analysis of suitable subgroups was undertaken. Results. In total, 12 studies (11 observational, 1 RCT) assessing 2431 open fractures were included for analysis. All compared the addition of a local antibiotic therapy to a standard treatment versus the standard treatment alone. The methods of delivery were vancomycin powder (4 papers), tobramycin polymethylmethacrylate beads (4 papers), gentamicin coated intramedullary (IM) nails (2 papers), gentamicin injections (1 paper) and antibiotic released IM core cement (1 paper). The addition of vancomycin powder did not decrease infection rates in comparison to intravenous antibiotics alone (OR 1.3, 95% CI (0.75 – 2.26)). Antibiotic coated IM Nails appear to have an association with lower infection rates than standard IM Nails. PMMA antibiotics have shown varied results in reducing infection rates depending on the individual studies. Conclusions. There are numerous methods available to deliver antibiotics locally to an open fracture site. Further high-quality research is required to provide a definitive conclusion on their efficacy irrespective of delivery method


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 119 - 119
4 Apr 2023
Jalal M Wallace R Peault B Simpson H
Full Access

To test and evaluate the effectiveness of local injection of autologous fat-derived mesenchymal stem cells (MSCs) into fracture site to prevent non-union in a clinically relevant model. 5 male Wistar rats underwent the same surgical procedure of inducing non-union. A mid-shaft tibial osteotomy was made with 1mm non-critical gap. Periosteum was stripped around the two fracture ends. Then, the fracture was fixed by ante-grade intramedullary nail. The non-critical gap was maintained by a spacer with minimal effect on the healing surface area. At the same surgical time, subcutaneous fat was collected from the ipsilateral inguinal region and stem cells were isolated and cultured in vitro. Within three weeks postoperatively, the number of expanded stem cells reached 5×10. 6. and were injected into the fracture site. Healing was followed up for 8 weeks and the quality was measured by serial x-rays, microCT, mechanical testing and histologically. Quality of healing was compared with that of previously published allogenic, xenogeneic MSCs and Purified Buffered Saline (PBS) controls. All the five fractures united fully after 8 weeks. There was a progressive increase in the callus radiopacity during the eight-week duration, the average radiopacity in the autologous fat-MSC injected group was significantly higher than that of the allogeneic MSCs, xenogeneic MSCs and the control group, P < 0.0001 for treatment, time after injection, and treatment-time interaction (two-way repeated measure ANOVA). MicroCT, mechanical testing and histology confirmed radiological findings. The autologous fat-MSCs are effective in prevention of atrophic non-union by stimulation of the healing process leading to a solid union. The quality and speed of repair are higher than those of the other types of cell transplantation tested


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 85 - 85
2 Jan 2024
Frost M Tirta M Rahbek O Rytoft L Ding M Shen M Duch K Kold S
Full Access

Healing after bone fracture is assessed by frequent radiographs, which expose patients to radiation and lacks behind biological healing. This study aimed to investigate whether the electrical impedance using electrical impedance spectroscopy correlated to quantitative scores of bone healing obtained from micro-CT and mechanical bending test. Eighteen rabbits were subjected to tibial fracture that was stabilized with external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the fracture site. Impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz. The animals were divided into three groups with different follow-up time: 1, 3 and 6 weeks for micro-CT (Bone volume/tissue volume (BV/TV, %)) and mechanical testing (maximum stress (MPa), failure energy (kJ/cm3), young modulus (Mpa)). There was a statistically significant correlation between last measured impedance at 5 Hz frequency immediately prior to euthanasia and BV/TV of callus (−0.68, 95%CI: (−0.87; −0.31)). Considering the mechanical testing with three-point bending, no significant correlation was found between last measured impedance at 5 Hz frequency immediately prior to euthanasia and maximum stress (−0.35, 95%CI: (−0.70; 0.14)), failure energy (−0.23, 95%CI: (−0.63; 0.26)), or young modulus (−0.28, 95%CI: (−0.66; 0.22)). The significant negative correlation between impedance and BV/TV might indicate that impedances correlate with the relative bone volume in the callus site. The lack of correlation between impedance and mechanical parameters when at the same time observing a correlation between impedance and days since operation (0-42 days), might indicate that the impedance can measure biological changes at an earlier time point than rough mechanical testing


Bone & Joint Research
Vol. 11, Issue 8 | Pages 585 - 593
1 Aug 2022
Graham SM Jalal MMK Lalloo DG Hamish R. W. Simpson A

Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process. Methods. A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing. Results. The fracture healing process was different between the two groups at week 4 after surgery; only two out of eight rats showed full healing in Group 1 (ART-treated), while seven out of eight rats had bone union in Group 2 (control) (p = 0.040). However, at week eight postoperatively, there was no statistical difference in bone healing; seven out of eight progressed to full union in both groups. Conclusion. This study demonstrated that combination ART resulted in delayed fracture healing at week 4 after surgery in rats, but did not result in the development of nonunion. Cite this article: Bone Joint Res 2022;11(8):585–593


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 5 - 5
7 Nov 2023
Ncana W
Full Access

Open tibia fractures are common injuries in our paediatric population and are often associated with high-energy trauma such as pedestrian-vehicle accidents. At our institution, these injuries are routinely treated with debridement and mono-lateral external fixation. The purpose of this study was to determine the outcome of open tibia fractures treated according to this protocol, as well as the complication rate and factors contributing to the development of complications. We performed a retrospective folder review of all patients with open tibia fractures that were treated according to our protocol from 2015–2019. Patients treated by other means, who received primary treatment elsewhere, and with insufficient data, were excluded. Data was collected on presenting demographics, injury characteristics, management, and clinical course. Complications were defined as pin tract infections, delayed- or non-union, malunion, growth arrest, and neurovascular injury. Appropriate statistical analysis was performed. One-hundred-and-fifteen fractures in 114 children (82 males) with a median age of 7 years (IQR 6–9) were included in the analysis. Pedestrian vehicle accidents (PVA's) accounted for 101 (88%) of fractures, and the tibial diaphysis was affected in 74 cases (64%). Fracture severity was equally distributed among the Gustillo-Anderson grades. The median Abbreviated Injury Score was 4 (IQR 4;5). Ninety-five fractures (83%) progressed to uneventful union within 7 weeks. Twenty patients (17%) developed complications, with delayed union and fracture site infections being the most common complications. Gustillo-Anderson Grade 3 fractures, an increased Abbreviated Injury Score, and the need for advanced wound closure techniques were risk factors for developing complications. Surgical debridement and external fixation in a simple mono-lateral frame is an effective treatment for open tibia fractures in children and good outcomes were seen in 83% of patients. More severe injuries requiring advanced wound closure were associated with the development of complications


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 35 - 35
23 Jun 2023
Lavernia C Patron LP Lavernia CJ Gibian J Hong T Bendich I Cook SD
Full Access

Fracture of contemporary femoral stems is a rare occurrence. Earlier THR stems failed due to design issues or post manufacturing heat treatments that weakened the core metal. Our group identified and analyzed 4 contemporary fractured femoral stems after revision surgery in which electrochemical welds contributed to the failure. All four stems were proximally porous coated titanium alloy components. All failures occurred in the neck region post revision surgery in an acetabular cup exchange. All were men and obese. The fractures occurred at an average of 3.6 years post THR redo (range, 1.0–6.5 years) and 8.3 years post index surgery (range, 5.5–12.0 years). To demonstrate the effect of electrocautery on retained femoral stems following revision surgery, we applied intermittent electrosurgical currents at three intensities (30, 60, 90 watts) to the polished neck surface of a titanium alloy stem under dry conditions. At all power settings, visible discoloration and damage to the polished neck surface was observed. The localized patterns and altered metal surface features exhibited were like the electrosurgically-induced damage priorly reported. The neck regions of all components studied displayed extensive mechanical and/or electrocautery damage in the area of fracture initiation. The use of mechanical instruments and electrocautery was documented to remove tissues in all 4 cases. The combination of mechanical and electrocautery damage to the femoral neck and stem served as an initiation point and stress riser for subsequent fractures. The electrocautery and mechanical damage across the fracture site observed occurred iatrogenically during revision surgery. The notch effect, particularly in titanium alloys, due to mechanical and/or electrocautery damage, further reduced the fatigue strength at the fractured femoral necks. While electrocautery and mechanical dissection is often required during revision THA, these failures highlight the need for caution during this step of the procedure in cases where the femoral stem is retained


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 6 - 6
23 Apr 2024
Mistry D Rahman U Khatri C Carlos W Stephens A Riemer B Ward J
Full Access

Introduction. Continuous compression implants (CCIs) are small memory alloy bone staples that can provide continuous compression across a fracture site, which change shape due to temperature changes. Reviews of CCIs in orthopaedics have documented their use in mainly foot and ankle surgery, with very limited descriptions in trauma. They could be beneficial in the management of complex or open injuries due to their low profile and quick insertion time. The aim of this case series were to clarify the use of CCIs in modern day limb reconstruction practice. Materials & Methods. This was a single centred study looking retrospectively at prospective data for patients who were treated for an acute fracture or non-union with a CCI between September 2019 and May 2023. Primary outcome was to determine the function and indication of the CCI as judged retrospectively and secondary outcomes investigated unplanned returns to theatre for infection or CCI failure. Results. Sixty patients were eligible with a mean age of 44.2 (range 8–89). Fifty-one patients were treated for acute fractures, nine for non-unions; and almost half (27 patients) had open injuries. There were seven different sites for treatment with a CCI, the most common being tibia (25 patients) and humerus (14 patients). Of the 122 CCIs used, 80 were used as adjuncts for fixation in 48 patients. Their indication as an adjunct fell into three distrinct categories – reduction of fracture (39 CCIs), fixation of key fragments (38 CCIs) and compression (3 CCIs). Of these 48 patients, 4 patients had a frame fixation, 19 had a nail fixation, 24 patients had a plate fixation. Forty-two CCIs were used in isolation as definitive fixation, all were for midfoot dislocations expect an open iliac wing fixation from a machete attack and an isolated paediatric medial malleolus fixation. Two patients returned to theatre for infection and two due to CCI failure. Conclusions. This series has demonstrated the versality of CCIs across multiple sites of the body and for a large variety of injuries. It has identified, when not used in isolation, three main indications to support traditional orthopaedic fixations. Given the unpredictability in limb reconstruction surgery, the diversity and potential of CCIs could form part of the staple diet in the modern-day practice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking. For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01. From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures