Advertisement for orthosearch.org.uk
Results 1 - 20 of 118
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 90 - 90
1 Apr 2019
Pierre D Gilbert J
Full Access

Introduction. Fretting crevice-corrosion (tribocorrosion) of metallic biomaterials is a major concern in orthopedic, spinal, dental and cardiovascular devices. 1. Stainless steel (i.e., 316L SS) is one alloy that sees extensive use in applications where fretting, crevices and corrosion may be present. While fretting-corrosion of this alloy has been somewhat studied, the concept of fretting-initiating crevice corrosion (FICC), where an initial fretting corrosion process leads to ongoing crevice-corrosion without continued fretting, is less understood. This study investigated the susceptibility of 316L SS to FICC and the role of applied potential on the process. The hypothesis is crevice-corrosion can be induced in 316L SS at potentials well below the pitting potential. Materials and Methods. A pin-on-disk fretting test system similar to that of Swaminathan et al. 2. was employed. Disks were ∼35 mm in diameter and the pin area was ∼500 mm. Samples were polished to 600 mm finish, cleaned with ethanol and distilled water. An Ag/AgCl wire as the reference, a carbon counter electrode and phosphate buffered saline (PBS, pH 7.4, Room T) were used for electrochemical testing. Load was controlled with a dead-weight system, monitored with a six-axis load cell (ATI Inc.). Interfacial motion was captured with a non-contact eddy current sensor (0.5 mm accuracy). Motion and load data acquisition was performed with Labview (National Instruments). Samples were loaded to ∼2 N. The potential per tests was increased from −250 to 250 mV (50 mV increments) with new locations and pins used in each repeat (n=3). Testing incorporated a 1 min rest before fretting (5 min, 1.25 Hz, 60 mm displacement saw tooth pattern). Fretting ceased and the load was held while currents were captured for another 5 min to assess ongoing crevice corrosion. Results. Testing showed that crevice corrosion can be initiated within minutes of fretting (or in a few cycles depending on potential; Fig. 1). Potentials as low as −100 mV showed evidence of corrosion, while sustained crevice corrosion was seen at −50 mV. As the potential increased above −50 mV, susceptibility to FICC increased. Fig. 2 is a typical cyclic polarization curve for 316L SS in PBS without fretting. Pitting starts at 400 mV vs Ag/AgCl, and the protection potential in this case is around potentials where FICC can be induced. Discussion. This study showed that 316L SS is prone to FICC starting at −100 mV and the severity of the crevice-corrosion damage depends on the applied potential (Fig. 3). Current after cessation of fretting takes longer to return to baseline or does not return indicating ongoing corrosion without fretting (Fig. 1). If the pin and disk are separated, the crevice-corrosion process stops immediately. The region immediately outside the fretting contact was crevice-like with a very small separation distance between the pin and disk surface which allowed crevice corrosion to develop (Fig. 3). Conclusion. 316L SS can undergo FICC at potentials close to normal physiological electrode potential conditions. Few fretting cycles are required to develop conditions for continued crevice-corrosion. Higher potentials increased the susceptibility of FICC in 316L SS


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 137 - 137
1 Apr 2019
Oladokun A Vangolu Y Aslam Z Harrington J Brown A Hall R Neville A Bryant M
Full Access

Introduction. Titanium and its alloys are attractive biomaterials attributable to their desirable corrosion, mechanical, biocompatibility and osseointegration properties. In particular, β – titanium alloys like the TMZF possess other advantages such as its lower modulus compared to Ti6Al4V alloy. This reduces stress shielding effect in Total Hip Arthroplasty (THA) and the replacement of V in the Ti6Al4V alloy, eliminates in-vivo V-induced toxicity. Unfortunately, implants made of TMZF were later recalled by the FDA due to higher than acceptable revision rates. The purpose of this study was to compare the fretting corrosion characteristics of Ti6Al4V and TMZF titanium alloys. It is hoped the findings will inform better design of β – titanium alloys for future applications in THA. Method. A ball-on-flat configuration was utilised in this study to achieve a Hertzian point contact for CoCrMo – Ti6Al4V and CoCrMo – TMZF material combinations. These were assessed at a fretting displacement of ±50 µm at an initial contact pressure of 1 GPa. Each fretting test lasted 6000 cycles at a frequency of 1 Hz. A two-electrode cell set-up was used to monitor in-situ open circuit potential (OCP). The simulated physiological solution consisted of Foetal Bovine Serum (FBS) diluted to 25% with Phosphate Buffered Saline (PBS) and 0.03% Sodium Azide (SA) balance. The temperature was kept at ∼37°C. Corrosion products on the worn surfaces and subsurface transformations in both alloys were characterised using the Scanning and Transmission Electron Microscopy (SEM/TEM) to obtain high resolution micrographs. The samples were prepared using a FIB-SEM. Bright-field, dark-field and selected area electron diffraction (SAED) patterns were all captured using a scanning TEM (STEM) and Energy Dispersed X-Ray spectroscopy (EDX) mapping was carried out. Results. The results showed that fretting regime transition from partial-slip to gross slip was delayed a few hundred cycles for TMZF relative to the Ti6Al4V (Figure 1). This indicates that the lower modulus of TMZF influences the degree of elastic deformation accommodated prior to the initiation of plastic shear at the fretting interface. The OCP directly corresponded to the fretting regime for both material combinations (Figure 2). Surface and subsurface characterisation of both alloys show differences in the structure of their mechanically mixed corrosion products and metallurgical transformations. Interestingly, an amorphous Co-rich layer was seen across the TMZF surface (Figure 3) whereas, pitting corrosion products from the CoCrMo alloy was seen on the Ti6Al4V alloy. Conclusion. In summary, the difference in the fretting behavior of Ti6Al4V and TMZF directly corresponds to the combined differences in their elastic modulus and surface chemistry. This corresponds to the differences observed in their electrochemical behavior. However, the main differences observed were the properties of their corrosion products and subsurface metallurgical transformations. These observed characteristic differences are to be considered in further examination of the cause of higher failure rates in TMZF alloys. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 117 - 117
1 Apr 2019
Oladokun A Hall R Bryant M Neville A
Full Access

Introduction. Titanium and its alloys are attractive biomaterials attributable to their desirable corrosion, mechanical, biocompatibility and osseointegration properties. Ti6Al4V alloy in particular remains a prominent biomaterial used in Total Hip Arthroplasty (THA) today. This is partly due to biocompatibility and stress shielding issues with CoCrMo alloys, resulting in its increasing side-lining from the THA construct. For several decades now, research efforts have been dedicated to understanding wear, corrosion and surface degradation processes in implant materials. Only recently have researchers shown interest in understanding the subsurface implications of fretting and the role it plays on implant fracture. The purpose of this study was to utilise advanced microscopy and spectroscopy techniques to characterise fretting-induced subsurface transformations in Ti6Al4V. This makes mapping specific regions that are most prone to wear and fatigue failures at the modular taper interface of THA probable. Thus, informing a proactive approach to component design and material selection. Method. A ball-on-flat configuration was utilised in this study to achieve a Hertzian point contact for a CoCrMo – Ti6Al4V material combination. Four fretting displacement amplitudes were assessed: ±10, ±25, ±50 and ±150 µm. An initial contact pressure of 1 GPa was used for all fretting tests in this study and each fretting test lasted 6000 cycles at a frequency of 1 Hz. The simulated physiological solution consisted of Foetal Bovine Serum (FBS) diluted to 25% with Phosphate Buffered Saline (PBS) and 0.03% Sodium Azide (SA) balance. The temperature was kept at ∼37°C. Subsurface transformations in the Ti6Al4V alloy was characterised using the Transmission Electron Microscopy (TEM) to obtain high resolution micrographs. The samples were prepared using a FIB-SEM. Bright-field, dark-field and selected area electron diffraction (SAED) patterns were all captured using a scanning TEM (STEM) and Energy Dispersed X-Ray spectroscopy (EDX) mapping was carried out. Results. At both ±10 and ±25 µm displacement, a stick fretting regime was realised. Subsurface transformation in the Ti6Al4V alloy was characterised as strain-induced orientation. At ±50 µm, a mixed fretting regime was realised, TEM and SAED micrographs as well as EDX spectroscopy identified complex but distinctive structures at the surface and subsurface of the Ti6Al4V alloy. This included a CoCrMo-rich fine particulate, mechanically mixed structure, an amorphous-transformed Ti6Al4V structure and a highly refined nano-crystalline Ti6Al4V structure. At ±150 µm, a full gross slip regime was realised and Ti6Al4V alloy was characterised mainly by subsurface cracks, formation and refinement of nano-crystalline structures. Conclusion. The degree of subsurface recrystallization within Ti6Al4V alloy was observed to be energy dependent. However, the manifestation of the dissipated energy was dependent on the contact condition. The interwoven relationship between energy dissipation, contact condition and mechanisms of clinical failure in Ti6Al4V was consolidated into a map (Figure 1). The map is intended to provide users with an indication of the failure modes to expect for an implant material subjected to specific tribocorrosion conditions. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 15 - 15
1 Feb 2021
Diaz R Wen P Shelton J
Full Access

Taper corrosion and fretting have been associated with oxide layer abrasion and fluid ingress that contributes to adverse local tissue reactions with potential failure of the hip joint replacement. [1,2]. Both mechanisms are considered to be affected by the precise nature of the taper design. [3]. Indeed relative motion at the taper interface that causes fretting damage and wear effects, such as pistoning and rocking, have been described following analysis of implants at retrieval. [4,5]. However, there is much less reported about the mechanisms that allow the fluid ingress/egress at the taper interface which would drive corrosion. Thus the aim of the present study was to investigate the effect of trunnion design on the gap opening and taper relative motions under different load scenarios and taper designs. A 3-D finite element model of a 40mm CoCr modular femoral head and a Ti6Al4V trunnion was established in Abaqus CAE/2018. Femoral head and trunnion geometries were meshed with an element (C3D8) size of 0.17mm. Tapers were assembled by simulating a range of impact forces (AF); taper interface behaviour was evaluated under physiological forces and frictional moments simulated during walking activity. [6]. , assuming different coefficients of friction (CF), Figure 1. The output involved the total and normal relative motion of the surfaces at the taper interface. The model predicted for a taper mismatch of 0.36° which, when combined with an assembly force of 2kN, generated the largest taper gap opening (59.2mm) during walking, Figure 2. In all trunnion designs the largest normal relative motion coincided with heel strike in the gait cycle (0–5%). The taper gap and normal relative motions were related to the initial taper lock area. Furthermore, the direction of the total motion was different in all three taper mismatches, with a shift in the direction towards the normal of the surface as the taper mismatch increased, Figure 3. By contrast, the direction of the normal relative motions did not change with different trunnion designs. Contact patterns were asymmetrical and contact areas varied throughout the walking activity; contact pressure and the largest taper gap were located on the same side of the taper, suggesting toggling of the trunnion. The relationship between taper gap opening and initial taper lock contact area suggests that the taper contact area functions as a fulcrum in a lever mechanism. Large taper mismatches create larger relative motions that will not only create more wear and fretting damage but also larger normal relative motions. This may allow fluid ingress into the taper interface and/or the egress of fluid along with any metal wear particles into the body. This increased understanding of the taper motion will result in improved designs and ultimately taper performance. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 61 - 61
1 Feb 2017
Khan H Riva F Pressacco M Meswania J Panagiotidou A Coathup M Blunn G
Full Access

Background. Complications of metal-on-metal hip resurfacing, leading to implant failure, include femoral notching, neck fracture, and avascular necrosis. Revision arthroplasty options include femoral-only revision with a head, however mis-matching radial clearance could accelerate metal ion release. Alternatively, revision of a well-fixed acetabular component could lead to further bone loss, complicating revision surgery. We have developed a ceramic hip resurfacing system with a titanium-ceramic taper junction; taking advantage of the low frictional torque and wear rates that ceramic affords. Taking a revision scenario into account, the ceramic head has a deep female taper for the resurfacing stem, but also a superficial tapered rim. Should revision to this resurfacing be required, any femoral stem with a 12/14 taper can be implanted, onto which a dual taper adaptor is attached. The outer diameter of the taper adaptor then becomes the male taper for the superficial taper of the ceramic head; ultimately allowing retention of the acetabular component. In an in-vitro model, we have compared the fretting corrosion of this taper adaptor to existing revision taper options: a titanium-cobalt chrome (Ti-CoCr) taper junction, and a titanium-titanium sleeve-ceramic (Ti-Ti-Cer) taper junction. Methods. To simulate gait, sinusoidal cyclical loads between 300N-2300N, at a frequency of 3Hz was applied to different neck offsets generating different bending moments and torques. Bending moment and frictional torque were tested separately. An electrochemical assessment using potentiostatic tests at an applied potential of 200mV, was used to measure the fretting current (μA) and current amplitude (μA). In a short term 1000 cycle test with bending moment, four neck lengths (short to x-long) were applied. For frictional torque, four increments of increasing torque (2-4-6-8Nm) were applied. In a long-term test using the taper adaptor, the combination of worst-case scenario of bending and torque were applied, and fretting currents measured every million cycles, up to 10 million cycles. Results. Short-term test: When adjusting bending moment the taper adaptor displayed equivalent fretting currents for the short and medium neck lengths. Using the long neck the taper adaptor displayed a higher fretting current, though this was not significant (Kruskal-Wallis test). However, using the X-Long adaptor the fretting current was significantly higher than the other tapers (Fig. 1). Across the range of frictional torques, the taper adaptor displayed equivalent fretting currents to the Ti-CoCr single taper. The Ti-Ti-Cer displayed the lowest fretting currents but this was not significant when compared to the other combinations (Fig. 2). Long-term test: combining the worst case bending (X-Long) and torque (8Nm) showed consistent fretting currents and current amplitudes across 10 million cycles, with no significant variance of the median values (Fig. 3). Conclusion. Electro-chemical testing has highlighted caution if revision arthroplasty is performed using the X-Long taper adaptor. However for shorter neck lengths, fretting corrosion is comparable to existing revision tapers. The LIMA ceramic resurfacing arthroplasty is an integrated system and can be safely revised to a conventional hip system using a dual taper head, and taper adaptor


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 137 - 137
1 Feb 2017
Gilbert J Grostefon J Mali S Kim J Ouellette E
Full Access

Introduction. Mechanically assisted crevice corrosion (MACC) of head-neck modular taper junctions is prevalent in virtually all head neck tapers in use today. To date, no clear in vitro tests of design, material or surgical elements of the modular taper system have been reported that show which factors principally affect MACC in these tapers. Possible elements include seating load, head-neck offset, surface roughness, taper engagement length, material combination, angular mismatch, and taper diameter. The goals of this study were to use an incremental fretting corrosion test method. 1. to assess the above 7 elements using a design of experiments approach. The hypothesis is that only one or two principal factors affect fretting corrosion. Methods. A 2. 7-2. design of experiment test (7 factors, ¼ factorial, n=32 total runs, 16 samples per condition per factor) was conducted. Factors included: Assembly Force (100, 4000N), Head Offset (1.5, 12 mm), Taper Locking Position (Mouth, Throat), Stem Taper Length (0.44, 0.54 in), Stem Taper Roughness (Ground, Ridged), Taper Diameter (9/10, 12/14), and Stem Material (CoCrMo, Ti-6Al-4V). The heads were CoCrMo coupled with taper coupons (DePuy Synthes, Warsaw, IN). Test components were assembled wet and seated axially with 100 or 4000N assembly force. The assemblies were immersed in PBS and potentiostatically held at −50mV vs. Ag/AgCl. Incremental cyclic loads were applied vertically to the head at 3Hz until a 4000N maximum load was reached (See Fig. 1). Fretting currents at 4000 N cyclic load were used for comparisons while other parameters, including onset load, subsidence, micromotion and pull off load were also captured. Statistical analysis was performed using Pareto charts and Student's T-tests for single factor comparisons (P < 0.05 was statistically significant). Results. Average fretting corrosion currents at 4000 N cyclic load ranged from 0 to 23 µA for all test specimens. The primary factors that statistically affected fretting corrosion currents were head-neck offset (P<0.05) and assembly load (P<0.05). Test factors with the most significance are shown in the Pareto chart of effects (Fig 2). Assembly force, head offset, and the interaction between these two factors were the most significant effects (see Fig 3). All other factors had diminishing effects on fretting current. Note that there is a correlation between fretting currents and pull off load (Fig. 3c). A number of interactive effects were seen between factors on various output parameters (e.g., subsidence, pull off load, onset load) as well. Discussion. This work demonstrates that the principal factors affecting fretting corrosion are seating load and head-neck offset. Material combination, taper diameter, engagement length, roughness and angular mismatch were less significant effectors of fretting corrosion. This test assesses early fretting corrosion response but does not necessarily predict long-term performance where crevices and solution changes may be important. Significance. This work shows a relative comparison of the effects of multiple design, material and surgical elements on the early fretting corrosion behavior of modular tapers in vitro. Head offset and seating loads represent the most significant factors amongst those studied. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 104 - 104
1 Apr 2019
Pourzal R Hall D Lundberg H Mathew MT Urban R Jacobs J
Full Access

INTRODUCTION. The lifetime of total hip replacements (THR) is often limited by adverse local tissue reactions to corrosion products generated from modular junctions. Two prominent damage modes are the imprinting of the rougher stem topography into the smoother head taper topography (imprinting) and the occurrence of column-like troughs running parallel to the taper axis (column damage). It was the purpose of this study to identify mechanisms that lead to imprinting and column damage based on a thorough analysis of retrieved implants. METHODS. 776 femoral heads were studied. Heads were visually inspected for imprinting and column damage. Molds were made of each head taper and scanned with an optical coordinate measuring machine. The resulting intensity images were used to visualize damage on the entire surface. In selected cases, implant surfaces were further analyzed by means of scanning electron microscopy (SEM) and white light interferometry. The alloy microstructure was characterized for designs from different manufactures. RESULTS. 165 heads exhibited moderate to severe damage (modified Goldberg scale). Out of those heads 83% had imprinting and 28% exhibited column damage. In most cases with imprinting, the entire contact area between stem and head was affected (Figure 1). Several cases exhibited early signs of imprinting, usually starting on the distal-inferior and distal superior side. High resolution SEM imaging revealed that imprinting was a fretting driven process that was independent of the hardness and material of the stem and head. The SEM images showed that the main mechanism was surface fatigue under partial slip fretting. The generated wear debris was the primary driver of imprinting by three-body fretting. The effect was detrimental on the smoother head surface, but less severe on the rougher stem, where debris was pushed into the troughs of the machining mark topography. 90% of cases with column damage also exhibited imprinting. The other ten percent were either cases in which column damage was too extensive to identify imprinting, or the stem taper was smooth and therefore could not induce imprinting. Metallographic analysis showed that column damage was dictated by the alloy microstructure. Wrought alloy heads frequently exhibited banding related to slight alloy segregations. The process of column damage was entirely chemically driven with etching occurring along the banded microstructure eventually resulting in troughs that were several tens of micrometers deep (Figure 2). DISCUSSION. Imprinting and column damage are common damage modes in THR femoral heads. Imprinting is fretting (miro-motion) driven while column damage is caused chemically, but is also dictated by the alloy micro-structure. However, the results suggest that these two damage modes may be related. The damage process starts with local fretting slowly progressing to a large area of imprinting. The imprinting process leads to widening of the crevice, enabling joint fluid and biological constituents (protein, cells, etc.) to enter the taper interface. This change in local chemistry within a confined crevice environment can cause an etching process that leads to column damage, but only if the femoral head alloy has a banded microstructure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 60 - 60
1 Feb 2017
Khan H Meswania J Riva F Pressacco M Panagiotidou A Coathup M Blunn G
Full Access

Background. Hip resurfacing has advantages for the young active patient with arthritis; maintaining a large range of motion, preserving bone stock, and reduced dislocation risk. However high serum metal ion levels with metal-on-metal resurfacing, and their clinical implications, has led to a decline in the use of hip resurfacing. Ceramic bearing surfaces display the lowest frictional torque and excellent wear rates. Recent developments have enabled large, strong ceramic materials to be used as resurfacing components. Any wear debris that is generated from these articulations is inert. However an all-ceramic hip resurfacing could be at risk of fracture at the head-stem junction. A new ceramic hip resurfacing system with a titanium-ceramic modular taper junction has been developed. The introduction of a taper introduces the potential for fretting corrosion; we sought to determine the extent of this in an in-vitro model, and compared this prosthesis to the conventional 12/14 titanium-cobalt chrome (Ti6Al4V-CoCr) taper junction. Methods. To simulate the gait cycle, sinusoidal cyclical loads between 300N-2300N, at a frequency of 3Hz, were applied to different head-neck offsets generating different bending moments and torques. The effect of increasing the bending moment and frictional torque were tested separately. Furthermore, the resurfacing head was mounted in a fixture held with just the stem, thus representing complete bone resorption under the head. An electrochemical assessment using potentiostatic tests at an applied potential of 200mV, was used to measure the fretting current (μA) and current amplitude (μA). In a short-term 1000 cycle test, six neck lengths (short to xxx-long) of the Ti6Al4V-CoCr taper were compared to the standard neutral (concentric), and 3mm A/P offset stem options for the resurfacing design. To represent frictional torque, four increments of increasing torque (2-4-6-8Nm) were applied to both tapers. In a long term test with the resurfacing stem, the worst-case scenario of the eccentric offset option and 8Nm of torque were applied, and potentiostatic measurements were taken every million cycles, up to 10 million cycles. Results. For bending moment through the centre of the head, the standard neutral resurfacing taper displayed equivalent fretting current (1.35μA) compared to its conventional taper equivalent, the short 12/14 Ti6Al4V-CoCr taper (Fig. 1a). That was despite the bending moment through the resurfacing taper being higher due to the offset nature of its taper in relation to the centre of the head. For applied torque, the resurfacing taper displayed reduced average fretting current and average maximum fretting current when compared to the conventional taper (Fig. 1b), though this did not reach statistical significance (Kruskal-Wallis test). Under long term testing for worst-case bending and torque, the resurfacing taper displayed low fretting currents (<2μA and <5μA respectively) with no significant variance of the median values across 10 million cycles (Figs. 2 and 3). Conclusion. When compared to the gold-standard taper junction, the LIMA ceramic hip resurfacing displays equivalent fretting corrosion for bending moment and improved fretting corrosion for frictional torque. Across long term testing, stable and low fretting currents at this taper junction highlight its potential in clinical use


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 132 - 132
1 Feb 2017
MacDonald D Chen A Lee G Klein G Cates H Mont M Rimnac C Kurtz S
Full Access

Introduction. During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. Previous studies have observed that the use of a ceramic head can mitigate the extent of corrosion damage at the taper. Moreover, in vitro testing suggests that corrosion is not a concern in sleeved ceramic heads [1]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads. Materials and Methods. Thirty sleeved ceramic heads (Biolox Option: CeramTec) were collected during revision surgery as part of a multi-center retrieval program. The sleeves were used in conjunction with a zirconia-toughened alumina femoral head. The femoral heads and sleeves were implanted between 0.0 and 3.25 years (0.8±0.9, Figure 1). The implants were revised predominantly for instability (n=14), infection (n=7), and loosening (n=5). Fifty percent of the retrievals were implanted during a primary surgery, while 50% had a history of a prior revision surgery. Fretting corrosion was scored using a previously described 4-point, semi-quantitative scoring system proposed by Higgs [2]. Results. Among the sleeved ceramic heads, mild-to-moderate fretting corrosion scores (Score = 2–3) were observed in 96% of internal tapers, 26% of external tapers, and 82% of the stems. On the internal taper surface, 5 sleeves had moderate fretting corrosion data (Score = 3, Figure 2). None of sleeves had severe (Score = 4) at any taper surface. Fretting corrosion scores were higher at the internal taper surface than the external taper. Implantation time was the main predictor of increased fretting-corrosion of the external sleeve tapers. Discussion. For the sleeved ceramic heads, we found that fretting corrosion can occur in these components, particularly on the internal surface of the sleeve. However, the fretting corrosion scores were predominantly mild, and lower than fretting scores of CoCr heads in metal on polyethylene bearings. Because the sleeves are Ti alloy, the corrosion products are considered to be less cytotoxic than Co and Cr. The primary limitation to this study is the short-term follow-up of these retrievals. As the fretting corrosion process is often associated with in vivo duration, future studies with longer-term implants are necessary to elucidate the long-term performance of these devices


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 133 - 133
1 Feb 2017
Gascoyne T Turgeon T
Full Access

Introduction. Detailed analysis of retrieved total hip replacements (THRs) is valuable for assessing implant and material successes and failures. Reduction of bearing wear and corrosion and fretting of the head-neck trunnion is essential to implant durability and patient health. This research quantifies and characterizes taper and bearing surface damage on retrieved oxidized zirconium THRs. Methods. Initially, 11 retrieved oxidized zirconium femoral heads were examined along with their associated femoral stems. Relevant patient and retrieval data was collected from clinical charts and radiographs. Taper corrosion (Figure 1) and fretting damage (Figure 2) scoring was performed following the Dyrkacz [1] method. A coordinate measuring machine was used to obtain a detailed surface map of the male and female taper surfaces. Taper surface maps were best-fit with an idealized cone followed by volume subtraction to quantify the amount of material removed as a result of fretting and corrosion processes. Scanning electron microscopy was performed on select samples to identify specific damage modes. Unique surface bumps were noted on the articular surface of select femoral heads (Figure 3). Seventeen femoral heads were added to the analysis specifically for identification of these bumps. Articular surfaces were searched under SEM magnification and bumps were identified and counted. Parametric statistical correlations were performed with SAS v9.3. Results. Mean patient age was 61 years (Range: 35–95) with mean implantation period being 2.0 years (Range: 0.1–11.4) and mean body mass index of 29 kg/m. 2. (Range: 22–46). Revision for infection (n=11), peri-prosthetic fracture (n=5) and dislocation (n=5) were the main reasons for revision. Mean corrosion damage scores were 2.0 and 3.6 (head, neck) while mean fretting damage scores were 8.5 and 5.8 (head, neck). Fretting damage score was weakly correlated with implantation period (p=0.07) while corrosion damage score was not. Mean corrosion and fretting volume measured 0.40 mm. 3. and 0.87 mm. 3. (head, neck). Volume of corrosion and fretting damage did not correlate with implantation period; however neck volume correlated with inclination angle of the acetabular cup (p<0.01). Bearing diameter was not found to correlate with corrosion and fretting damage score or volume. The unique surface bumps were identified in 12 of 28 samples, with 3 samples having <10 bumps. Presence of these bumps did not appear to be related to bearing diameter, implantation period, or any damage metrics. Conclusion. Fretting damage was found to correlate with implantation period, suggesting that is a continuous in vivo process; however, this was not found for corrosion damage. Fretting damage volume correlated with acetabular cup angle; however, this may be coincidence as only 8 samples were included in the analysis. Overall, our corrosion damage scores (2.0–3.6) were lower than previously published values for 28mm & 36mm cobalt-chrome heads (4.5–13.1) [1]. However, our fretting damage scores (5.8–8.5) were higher than previously published (2.8–4.4) [1]. Greater fretting damage on the oxidized zirconium heads may be explained by the softer zirconium alloy compared to that of cobalt-chromium. Further subsurface investigation of the surface bumps is underway using a focused ion beam mill


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 100 - 100
1 Feb 2017
Lange J Koch C Wach A Wright T Hopper R Ho H Engh C Padgett D
Full Access

INTRODUCTION. Adverse local tissue reactions (ALTR) and elevated serum metal ion levels secondary to fretting and corrosion at head-neck junctions in modular total hip arthroplasty (THA) designs have raised concern in recent years. Factors implicated in these processes include trunnion geometry, head-trunnion material couple, femoral head diameter, head length, force of head impaction at the time of surgery, and length of implantation. Our understanding of fretting and corrosion in vivo is based largely on the analysis of retrieved prostheses explanted for reasons related to clinical failure. Little is known about the natural history of head-neck tapers in well-functioning total hip replacements. We identified ten well-functioning THA prostheses retrieved at autopsy. We sought to determine the pull-off strength required for disassembly and to characterize fretting and corrosion apparent at the head-neck junctions of THAs that had been functioning appropriately in vivo. METHODS. Ten cobalt-chromium femoral stems and engaged cobalt-chromium femoral heads were retrieved at autopsy from 9 patients, after a mean length of implantation (LOI) of 11.3 ± 8 years (range 1.9–28.5). Trunnion design and material, femoral head material, size, and length, LOI, and patient sex were recorded (Table 1). Femoral heads were pulled off on a uniaxial load frame according to ASTM standards under displacement control at a rate of 0.05mm/s until the femoral head was fully disengaged from the trunnion. Mating surfaces were gently cleaned with 41% isopropyl alcohol to remove any extraneous debris. Femoral trunnions and head tapers were examined under a stereomicroscope by two independent graders to assess presence and severity of fretting and corrosion (method previously established). Trunnions and tapers were divided into 8 regions: anterior, medial, posterior, and lateral in both proximal and distal zones. Minimum possible damage score per hip was 32 (indicating pristine surfaces). The total possible score per hip was 128 (2 damage modes × 2 mating surfaces × 8 regions × max score of 4 per region). RESULTS. Mean pull-off force among all retrievals was 2446 ± 841 N (1655 – 4246 N). Mean pull-off force for 14/16 tapers (2998 ± 1298 N) was larger than for 12/14 tapers (2210 ± 531 N). Seven retrievals (70%) had no evidence of damage on either the stem or head component (Fig. 1). Three retrievals showed evidence of damage: (1) corrosion in one zone of the femoral head taper (score 33); (2) a circumferential ring of fretting in one zone of the stem trunnion (score 36); (3) circumferential rings of minor fretting in two regions of the stem trunnion (score 40). LOI for damaged retrievals was 16.3 ± 6 years, longer than that for undamaged retrievals (9.1 ± 9.1 years). CONCLUSION. THAs that had been well-functioning in vivo showed little evidence of fretting and corrosion. The presence of minor fretting and corrosion correlated with increased LOI. Mean pull-off force was 2446 +/- 841 N among the complete sample of ten THAs. Larger tapers were associated with greater average pull-off strength. Further investigation is required in order to clarify the clinical implications of these results


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 4 - 4
1 Jan 2016
MacDonald D Clarkin-Wright G Parvizi J Lee G Klein G Rimnac C Gilbert J Kurtz S
Full Access

Introduction. In THA, fretting corrosion at the head-stem taper junction has emerged as a clinical concern that may result in adverse local tissue reactions, even in patients with a metal-on-polyethylene bearing [1]. Taper junctions that employ a ceramic head have demonstrated reduced corrosion at the interface [2]. However, during revision surgery with a well-fixed stem, a titanium sleeve is used in conjunction with a ceramic head to ensure proper fit of the head onto the stem and better stress distribution. In vitro testing has suggested that corrosion is not a concern in sleeved ceramic heads [3]; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads. Materials and Methods. Between 2001 and 2014, 35 sleeved ceramic heads were collected during revision surgery as part of a multi-center retrieval program. The sleeves were all fabricated from titanium alloy and manufactured by 4 companies (CeramTec (n=14), Smith & Nephew (Richards, n=11), Stryker (n=5), and Zimmer (n=5)). The femoral heads were made from 3 ceramics (Alumina (n=7), Zirconia (n=11), and Zirconia-toughened Alumina (n=17)). Sleeve dimensions (length and thickness) were measured using calibrated calipers. Fretting corrosion of the sleeves and available associated stems was scored using a 4-point, semi-quantitative scoring system [4], with 1 being little-to-no damage, and 4 corresponded to severe fretting corrosion. Five sleeves could not be extracted; thus the external surface was not scored. Results. Moderate-to-severe fretting corrosion scores (Score ≥ 2) were observed in 97% (34/35) of internal tapers (sleeve-femoral stem contact), 57% (17/30) of external tapers (sleeve-femoral head contact), and 65% (11/17) of the stems. The internal sleeve had higher fretting corrosion scores than the external taper (Mean Score Difference [MSD] = 1.1; p = 0.001) and stem (MSD = 0.7; p = 0.016). Fretting corrosion scores were correlated with implantation time at all surfaces (Rho ≥ 0.53; p ≤ 0.015). Scores were not correlated with sleeve dimensions (p > 0.05). Fretting corrosion scores of the external sleeve correlated directly with activity level (p = 0.005) and inversely with patient age (p = 0.03). Discussion. The retrieval data shows that fretting corrosion can occur in these components, particularly on the internal surface of the sleeve. The corrosion scores were similar to levels observed in prior studies of tapers in CoCr heads [2]. Implantation time was the main predictor of increased fretting corrosion. The impact of ceramic material and sleeve design currently remain unclear as the analyses were confounded with implantation time. Thus, more detailed and quantitative analyses are required to fully determine the factors that influence fretting corrosion of sleeved ceramic heads in THA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 68 - 68
1 Mar 2017
Oladokun A Bryant M Hall R Neville A
Full Access

Introduction. Fretting corrosion at the Head-Neck taper interface of Large Metal on Metal (MoM), Metal on Polymer (MoP) and Ceramic on Ceramic (CoC) total hip arthroplasty (THA) remains a clinical concern. Ceramic femoral heads have gained a lot of attention more recently as a possible way to mitigate/reduce the dissolution of Cobalt Chromium ions. The objective of this study is to assess the fretting corrosion currents emanating from four material combinations for which Ti6Al4V and Co28Cr6Mo are the neck components of Co28Cr6Mo and BIOLOX®delta femoral heads at three different cyclic loads. Method. 12/14 Ti6Al4V and Co28Cr6Mo spigots (designed to geometrically represent the stem) were impacted against Ø36mm Co28Cr6Mo and BIOLOX®delta femoral heads with a static force of 2kN as shown in Figure 1. The tapers were immersed in 25% v/v diluted Foetal Bovine Serum, PBS balance and 0.03% Sodium Azide at room temperature. In-situ electrochemistry was facilitated using a 3-eletrode cell arrangement whereby the neck components were the working electrode, Ag/AgCl was the reference electrode and a platinum counter electrode completed the cell. All combinations were held at a potential of 0V vs. Ag/AgCl and the cyclic load applied unto each couple were 1kN, 3kN and 5kN at 1Hz consecutively (see Figure 2). The fretting corrosion currents were converted into cumulative charge transferred (Q) by integrating the wear enhanced corrosion current. Results and Discussion. Bergmann et al.1 plotted the loading profile of a patient weighing 1000N doing various daily living activities. In their study, the range in loading cycles vary from 1kN (standing on one leg) to ∼9kN (stumbling). For this study, Figure 2 shows the sinusoidal loading profile used and the corresponding charge transferred as a result of wear enhanced corrosion. The results reveal an increase in the cumulative charge for all four combinations as cyclic load increases. While for all combinations, no negligible amount of cumulative charge was measured at 1kN, no significant difference was observed at 3kN and at 5kN, the charge transferred from both MoM and CoM fretting couples where Ti6Al4V is the neck component were significantly lower than the couples with Co28Cr6Mo neck (see figure 3). The BIOLOX®delta – Ti6Al4V couple was observed to generate the least wear enhanced corrosion current. This, we observe, is due to thick agglomerated oxides resulting from wear and corrosion products which can adhere to the anodic fretting interface (see figure 3). Conclusion. This study reveals that for both MoM and CoM combinations, the charge transferred through wear enhanced corrosion of Ti6Al4V prove to be significantly lower than the combinations with Co28Cr6Mo alloy. Furthermore, this study proposes that the agglomeration of wear and corrosion products (oxides) can lead to the reduction of fretting corrosion currents at modular fretting interfaces as seen in combinations involving Ti6Al4V alloys. This is relevant as titanium alloys are known to form thick oxides at fretting contacts. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 55 - 55
1 May 2016
Suchier Y Cardey PF Chollet M
Full Access

Introduction. Hip modular implants provide real advantages to patients and surgeons: the opportunity to restore the natural anatomy, to correct discrepancy is positioning, etc…. Nevertheless, recent publication showed the weakness of these prostheses. A review of the literature on this phenomenon is carried out, and shows that fretting fatigue and fretting wear is often pointed out to explain these issues. Objectives. The goal of this project is to optimise these products, carrying out advanced simulations with criterion that allow to compare the behaviour regarding fretting in the modularity. Methods. Different parameters are considered:. -. Geometric (length, width and height of the neck basis). -. Material (CrCo, TA6V4). -. Tribology (different friction coefficient to simulate different roughness). -. Environmental (load impaction). Several FEA simulations are carried out (Fig 1) in order to assess the sensitivity of these parameters. The choice of the criterion is of course an important point, and 2 main criterions are proposed to compare the designs regarding fretting wear and fretting fatigue. The experiment plan is exploited in order to find the best solutions for next designs. Fatigue tests are also carried out in ISO 7206–6 conditions (fig. 2): failure analyses are conducted and results are compared to simulation. Results and conclusion. To be correctly simulated, a failure of fretting fatigue need to be considered with appropriated criterion: FEA with Smith Watson Topper, a multi axial fatigue criteria, is an efficient way of improving the modularity design. The study also allows us to identify important parameters, like load impaction: it appears that a load too high or too low conducts to non-optimum behaviour. Similarly, simulations shows that a friction coefficient about 0, 4 leads a good behaviour regarding fatigue fretting as well as fatigue wear


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 270 - 270
1 Dec 2013
Traynor A Kinbrum A Housden J Collins S
Full Access

Introduction. Bearing surfaces of metal-on-metal (MoM) hip resurfacing devices and total hip replacements (THRs) are a known source of metallic debris. Further, large diameter heads and the high friction of a MoM joint are thought to lead to fretting and corrosion at the taper interface between modular components. 1. The metal debris generated can cause significant problems on the joint area. 2. This paper investigated fretting and corrosion of femoral head-neck junctions. Variables of the head-neck junction which may have an effect on fretting and corrosion were identified with the aim of determining the key drivers so that their risk on fretting and corrosion could be reduced through design. Additionally, a Chromium Nitride (CrN) coating was assessed to determine the effect on fretting and corrosion of coating the stem (male), head (female) or both trunnion interfaces. As there is currently no standard specification for a head-neck trunnion interface and trunnion designs vary significantly across the market, this work may lead to a positive change in the design and materials used in head-neck taper interfaces for all THR devices. Methods. Suitable head and stem combinations were identified to enable individual variables such as; coating, medial-lateral (M-L) offset, head offset and taper angle to be isolated (Figure 1 and Figure 2). For the coated components a 3 μm CrN coating was applied to trunnion using electron beam physical vapour deposition (Tecvac, Cambridge, UK). Fretting and corrosion testing was carried out in accordance with ASTM F1875-98 (2009) method II procedure B. 3. following assembly of the components under a 2 kN load. Results. For the majority of the testing the CrN coating reduced the fretting and corrosion. Tests showed that increasing the M-L offset decreased the dynamic current but increased the static current. The results also demonstrated that increasing the head offset increases the fretting and corrosion. Taper angle did not appear to significantly alter either fretting or corrosion. Discussion. There are many peer reviewed papers regarding fretting and corrosion observed in vivo and the consequence of this on the patient. 4,5,6. To the author's knowledge this systematic identification of individual variables accountable for damaged caused to the taper junction is the first of its kind. Previous issues have been identified with CrN coatings. 7. , however the coating used here has already been shown to be very durable as a bearing surface coating under long term tests. 8. The results presented here are therefore encouraging as they also demonstrate that both fretting and corrosion can be reduced by the addition of a CrN coating to trunnion surfaces. The M-L offset results indicated that fretting may have different root causes to corrosion, as different trends were seen for dynamic and static currents. Increasing the head length increased fretting and corrosion, while altering the taper angle had no significant effect. Further work is therefore required to establish additional trends to enable design optimisation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 81 - 81
1 Apr 2019
Bitter T Marra M Khan I Marriott T Lovelady E Verdonschot N Janssen D
Full Access

Introduction. Fretting corrosion at the taper interface of modular connections can be studied using Finite Element (FE) analyses. However, the loading conditions in FE studies are often simplified, or based on generic activity patterns. Using musculoskeletal modeling, subject-specific muscle and joint forces can be calculated, which can then be applied to a FE model for wear predictions. The objective of the current study was to investigate the effect of incorporating more detailed activity patterns on fretting simulations of modular connections. Methods. Using a six-camera motion capture system, synchronized force plates, and 45 optical markers placed on 6 different subjects, data was recorded for three different activities: walking at a comfortable speed, chair rise, and stair climbing. Musculoskeletal models, using the Twente Lower Extremity Model 2.0 implemented in the AnyBody modeling System™ (AnyBody Technology A/S, Aalborg, Denmark; figure1), were used to determine the hip joint forces. Hip forces for the subject with the lowest and highest peak force, as well as averaged hip forces were then applied to an FE model of a modular taper connection (Biomet Type-1 taper with a Ti6Al4V Magnum +9 mm adaptor; Figure 2). During the FE simulations, the taper geometry was updated iteratively to account for material removal due to wear. The wear depth was calculated based on Archard's Law, using contact pressures, micromotions, and a wear factor, which was determined from accelerated fretting experiments. Results. The forces for the comfortable walking speed had the highest peak forces for the maximum peak subject, with a maximum peak force of 3644 N, followed by walking up stairs, with a similar maximum peak force of 3626 N. The chair rise had a lower maximum peak force of 2240 N (−38.5%). The simulated volumetric wear followed the trends seen in the peaks of the predicted hip joint forces, with the largest wear volumes predicted for a comfortable walking speed, followed by the stairs up activity and the chair rise (Figure 3). The subjects with the highest peak forces produced the most volumetric wear in all cases. However, the lowest peak subject had a higher volumetric wear for the stairs up case than the average subject. Discussion. This study explored the effect of subject-specific variations in hip joint loads on taper fretting. The results indicate that taper wear was predominantly affected by the magnitudes of the peak forces, rather than by the orientation of the force. A more comprehensive study, capturing the full spectrum of patient variability, can help identifying parameters that accelerate fretting corrosion. Such a study should also incorporate other sources of variability, including surgical factors such as implant orientation, sizing, and offset. These factors also affect hip joint forces, and can be evaluated in musculoskeletal models such as presented here


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 108 - 108
1 Jan 2016
Day J MacDonald D Arnholt C Williams G Getz C Kraay M Rimnac C Kurtz S
Full Access

INTRODUCTION. Mechanically assisted crevice corrosion of taper interfaces was raised as a concern in total hip arthroplasty (THA) approximately 20 years ago (Gilbert 1993). In total shoulder replacement, however, comparatively little is known about the prevalence of fretting assisted crevice corrosion or the biomechanical and patient factors that influence this phenomenon. Given the comparatively lower loading experienced in the shoulder compared to the hip, we asked: (1) What is the prevalence of fretting assisted corrosion in modular total shoulder replacements, and (2) What patient and implant factors are associated with corrosion?. METHODS. Modular components were collected from 48 revision shoulder arthroplasties as part of a multi-center, IRB approved retrieval program. For anatomic shoulders, this included 40 humeral heads, 32 stems and four taper adapters from seven manufacturers. For reverse shoulders, there were eight complete sets of retrieved components from three manufacturers. The components were predominantly revised for instability, loosening and pain. Anatomical shoulders were implanted for an average of 3.1 years (st dev 3.8; range 0.1–14.5). Reverse shoulders were implanted for an average of 2.2 years (st dev 0.7; range 1.3–3.3). Modular components were disassembled and examined for taper damage. The modular junctions were scored for fretting corrosion using a semi-quantitative four-point scoring system adapted from Goldberg, et al. (Goldberg, 2002, Higgs 2013). The scoring system criteria was adapted from Goldberg and Higgs which is comprised of a one to four grading system (with one indicating little-to-no fretting/corrosion and four indicating extensive fretting/corrosion). The component alloy composition was determined using the manufacturer's laser markings and verified by x-ray fluorescence. Patient age, gender, hand dominance, alloy, flexural rigidity of the trunnion and taper geometry were assessed independently as predictors for fretting corrosion. RESULTS. Moderate to severe fretting corrosion (score > 2) was observed in 23% of the anatomic modular components (Figure 1) and 22% of the reverse shoulder components. An example with severe damage is included in Figure 1. There was no significant relation between corrosion scores and any of the assessed factors. DISCUSSION AND CONCLUSION. It has been suggested that fretting assisted crevice corrosion may be a concern in THA, particularly with large head metal-on-metal articulations. We have identified the presence of moderate to severe corrosion on approximately one quarter of all retrieved shoulder arthroplasties. This is similar to the proportion observed in retrieved modular hips (Goldberg, 2002). While the expected loading of the shoulder is less than that in the hip (Westerhoff, 2009), the offset between the effective center of the prosthetic humeral head and the taper connecter is often larger and the size of the taper is smaller. This can increase the effect of bearing surface loading on the taper. We were unable to detect significant associated biomechanical or patient factors. This was probably due to the limited sample size of our population. At the present time, the clinical effects of taper corrosion in shoulder arthroplasty remain unknown


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 77 - 77
1 Dec 2013
Hothi H Berber R Whittaker R Cro S Blunn G Skinner JA Hart A
Full Access

Introduction. It has been suggested that corrosion and fretting at the taper junctions of stemmed metal-on-metal hip replacements may contribute to their high failure rates. A peer-reviewed semi-quantitative scoring system [Goldberg et al., 2002] has been used to visually assess the severity of corrosion and fretting of the taper junction but has not been validated using multiple examiners. The aim of this study was to assess the inter-observer variability of this method. Method. Macroscopic and stereomicroscopic examinations of the femoral head and stem tapers of 100 retrieved large diameter metal on metal (MOM) hip components were performed by two independent observers using the methods defined by Goldberg et al. [2002] to quantify corrosion and fretting. Scores ranging from 1 (none) to 4 (severe) were assigned to the medial, lateral, posterior and anterior quadrants of the neck taper and the distal and proximal regions of the head taper. An overall score was then assigned to each surface as a whole. Cohen's weighted Kappa statistic (κ) was used to measure the inter-observer agreement. A quadratic weighting scheme, that allocated weights to the importance of disagreements that are proportional to the square of the number of categories apart, was used to take account of scaled disagreement. Kappa values were assessed using previously established criteria where κ ≤ 0 = poor, 0.01 to 0.20 = slight, 0.21 to 0.40 = fair, 0.41 to 0.60 = moderate, 0.61 to 0.80 = substantial, 0.81 to 1 = almost perfect. A sample size of 100 was used in order to detect a coefficient of 0.60 to within 0.25 with 95% confidence with two experienced observers. Statistical analysis was performed using Stata/IC version 12.1 (StataCorp, College Station, TC, USA) and a p value < 0.05 was considered statistically significant. Results. Figure 1 presents the observed and expected percentage agreement and kappa values. The observed agreement for the overall corrosion and fretting scores for the head taper were 95% and 82% respectively. The reliability of the proximal and distal head taper corrosion scores was moderate (κ = 0.54 to 0.57), whilst reliability of the overall head taper corrosion score was substantial (κ = 0.63). The reliability of the proximal, distal and overall head taper fretting scores was fair (κ = 0.21, 0.31 and 0.31 respectively). The observed agreement for the overall corrosion and fretting scores for the stem taper were 90% and 85%. The reliability of the overall stem taper corrosion (κ = 0.58) and the individual stem taper corrosion (κ = 0.54 to 0.56) scores was moderate. The reliability of the individual stem taper fretting scores ranged from slight to fair (κ = 0.14 to 0.24), whilst the reliability of the overall stem taper fretting score was fair (κ = 0.24). Discussion. The results of this study suggest that the Goldberg scoring system is a reliable method for visually quantifying stem and head taper corrosion. There is however a greater variability in fretting assessments between different examiners, which may be due to difficulties in distinguishing between insertion and/or retrieval damage and actual fretting


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 17 - 17
1 Feb 2020
Fattori A Negro ND Gunsallus K Lipman J Hotchkiss R Figgie M Wright T Pressacco M
Full Access

Introduction. Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the modular connections introduce however additional risks in terms of both mechanical strength and potential fatigue and fretting phenomena that may arise not only due to low demand activities loads, but also high demand (HD) ones that could be even more detrimental. The aim of this study was to assess the strength of the modular connection between the axle and the ulnar component in a novel convertible elbow prosthesis design under simulated HD and activities of daily living (ADLs) loading. Methods. A novel convertible total elbow prosthesis (LimaCorporate, IT) comprising both ulnar and humeral components that can be linked together by means of an axle, was used. Both typical ADLs and HD torques to be applied to the axle were determined based on finite element analysis (FEA); the boundary load conditions for the FEA were determined based on kinematics analysis on real patients in previous studies. The FEA resultant moment acting on the axle junction during typical ADLs (i.e. feeding with 7.2lbs weight in hand) was 3.2Nm while for HD loads (i.e. sit to stand) was 5.7 Nm. In the experimental setup, 5 axle specimens coupled with 5 ulnar bodies through a tapered connection (5 Nm assembly torque) were fixed to a torque actuator (MTS Bionix) and submerged in a saline solution (9g/l). A moment of 3.2 Nm was applied to the axle for 5M cycles through a fixture to test it under ADLs loading. After 5M cycles, the axles were analyzed with regards to fretting behavior and then re-assembled to test them against HD loading by applying 5.7 Nm for 200K cycles (corresponding to 20 years function). Results. All 5 samples withstood all 5.2M loading cycles without any mechanical failure. At the end of 5M cycles, each axle was still stable as the measured disassembly torque was 3.96 +/−0.18 Nm. Slight signs of fretting were detected on the tapered connection after 5M cycles, however they did not compromise the mechanical connection nor the stability. Discussion and Conclusions. Currently there are no reference standards that properly define protocols for biomechanical testing of elbow prostheses. In the present study, a test to mechanically assess the strength of an axle connection under both typical ADLs and HD loads was set. The connection was able to withstand the imposed conditions. In general, testing of TEA devices should include not only standard ADLs loads but also HD loads, which could be more detrimental for the long-term survivorship. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 128 - 128
1 May 2016
Wernle J Bischoff J Day J
Full Access

Introduction. Comprehensive research and retrieval analyses of metal on metal / metal on polyethylene hip fretting and corrosion have been reported. Design choices such as modularity, material couples, geometry and offsets, as well as surgical variability and patient sensitivity have been cited as factors contributing to revision. Findings are informing new designs, surgical techniques and patient testing. However, similar efforts have not been performed on the shoulder. Do reduced joint reaction forces imply lower risk of fretting and corrosion? In this study we designed an accelerated corrosion fatigue (ACF) test specific for the shoulder to allow for evaluation of varying designs, and compared results to a reported shoulder retrieval study [Day ORS 2015]. Methods. Anatomic configuration and reverse shoulder ACF tests were developed with loads and orientations determined from instrumented shoulder data and reported literature. Scaled loads of 1480 N and 962 N were applied to anatomic (Fig 1.A) and reverse (Fig 1.B) prostheses, respectively (n=5 each, with additional assembly control), in potential worse case loading directions (α=25°, β=20°: anatomic; α=0°, β=0°: reverse), at 5 Hz for 3.0 Mc with R=0.1. Test environment included 0.9% NaCl solution at elevated temperature (50° C) and a decreased pH (3.5). Mass, roughness (Ra) and taper damage (modified Goldberg scoring system) measures were taken before and after testing. Taper connections were assembled at impact loads of 3600 N +/− 20% based on cadaveric studies. Goldberg scores for 79 humeral heads and 61 stems from an IRB approved collection served as the comparator. Results. The ACF test methodology caused only fretting in anatomic testing (Fig 2) but both fretting and corrosion in reverse tests (Fig 3). Alloys of Titanium (Ti-6V-4Al and Ti-6Al-7Nb) exhibited higher levels of fretting than CoCr alloys in both test configurations. Significant Ra decreases post-test were noted on all Ti based components, with Ra increases on CoCr based heads and glenospheres (p<0.05). The average mass loss measured in anatomical testing was 1.44 ± 0.35 mg with an average Goldberg score of 1.8 ± 0.3. In the reverse test mass loss was 1.51 ± 0.36 mg with a Goldberg score of 2.4 ± 0.3. Retrievals (implanted 4.6 ± 4.3 years) had weighted average Goldberg scores of 1.6 for heads compared to 2.0 for stems, with the majority of damage from fretting. Discussion. Anatomic and reverse shoulder ACF tests were created that result in levels of taper damage similar to those noted in clinical retrievals (Fig 2, Fig 3). Reverse implant tapers, under reduced loads compared to anatomic but with higher humeral load offset, tend to show higher levels of taper damage in vitro. Under the same assembly conditions, offset is a large contributor to micromotion, fretting, and likely corrosion. With offset and modularity as design options for the shoulder surgeon, care must be taken not to introduce offerings which may lead to significant metal and particle release in vivo. The proposed ACF testing may be one method to evaluate current and proposed shoulder designs