Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 18 - 18
1 Apr 2013
Augat P Betz V Schroeder C Goettlinger M Jansson V Mueller PE Betz OB
Full Access

Common cell based strategies for treating bone defects require time-consuming and expensive isolation and expansion of autologous cells. We developed a novel expedited technology creating gene activated muscle grafts. We hypothesized that BMP-2 activated muscle grafts provide healing capabilities comparable to autologous bone grafting, the clinical gold standard. Two male, syngeneic Fischer 344 rats served as tissue donors. Muscle tissue was harvested from hind limbs and incubated with an adenoviral vector carrying the cDNA encoding BMP-2. Bone tissue was harvested from the iliac crest. Segmental bone defects were created in the right femora of 12 rats and were filled with either BMP-2 activated muscle tissue or bone grafts. After 8 weeks, femora were evaluated by radiographs, microCT, and biomechanical tests. BMP-2 activated muscle grafts and autologous bone grafts resulted in complete mineralization and healing, as documented by radiographs and microCT. Bone volume in the muscle graft defects (33+/-12mm3) was similar to autologous bone graft defects (39+/-5mm3). Torque at failure of the two groups was statistically indistinguishable (240+/-115 Nmm vs. 232+/-108Nmm). In previous experiments we demonstrated that the large segmental defect model in this study will not heal with either empty defects or non-activated muscle grafts. Our findings therefore demonstrate that BMP-2 gene activation of muscle tissue effectively stimulates defect healing similar to autologous bone grafts


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives. The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Methods. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant). Results. Average PMMA spacer in vivo time was 11.9 weeks (six to 18). Trabecular bone was present in 33.3% of the biomembrane specimens; bone presence did not correlate with spacer duration. Biomembrane morphology showed high vascularity and collagen content and positive staining for the key bone forming regulators, bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2). Positive differentiation of cultured biomembrane cells for osteogenesis was found in cells from patients with PMMA present for six to 17 weeks. Stem cell differentiation showed greater variability in pluripotency for osteogenic potential (70.0%) compared with chondrogenic or adipogenic potentials (100% and 90.0%, respectively). Significant upregulation of BMP2 and 6, numerous collagens, and bone gla protein was present in biomembrane compared with the cultured cell line. Biomembranes with longer resident PMMA spacer duration (vs those with shorter residence) showed significant upregulation of bone-related, stem cell, and vascular-related genes. Conclusion. The biomembrane technique is gaining favour in the management of complicated bone defects. Novel data on biological mechanisms provide improved understanding of the biomembrane’s osteogenic potential and molecular properties. Cite this article: Dr H. E. Gruber. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res 2016;5:106–115. DOI: 10.1302/2046-3758.54.2000483


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 417 - 417
1 Sep 2012
Chaudhury S Xia Z Hulley P Carr A
Full Access

INTRODUCTION. There is increasing evidence for a multi-stage model of rotator cuff (RC) tendon tears, wherein healing is affected by tear size. The underlying pathophysiology however is not fully understood. Changes in the production and remodeling of the RC extracellular matrix (ECM) are likely to be important determinants of RC tendinopathy as they affect healing and the ability to bear loads. This study aimed to gain greater insight into size related tear pathogenesis by analyzing gene expression profiles from normal, small and massive RC tears. METHODS. The genetic profiles of 28 human RC tendons were analyzed using microarrays representing the entire genome. 11 massive and 5 small torn RC tendon specimens were obtained from tear edges intraoperatively, and compared to 12 age matched normal controls. Semiquantitative real-time polymerase chain reaction (RT-PCR) and immunohistochemistry were performed for validation. RESULTS. Numerous insightful gene changes were detected. Key changes included upregulation of aggrecan in massive tendon tears compared to normal controls, but not in small tears (p < 0.05 and > 2-fold change). Matrix metallopeptidases (MMP)-3,-10,-12,-13,-15,-21,-25 and a disintegrin and metallopeptidase (ADAMs)-12,-15,-22 were significantly upregulated in tears. Aggrecan was upregulated in massive tendon tears but not in small tears. Amyloid was downregulated in the small and massive tear groups when compared to normals. BMP-5 was upregulated in small tears only when compared to normals. As part of the chemotaxis pathway, IL-3,-10,-13,-15,-18 were upregulated in tears, whereas downregulation of IL-1,-8,-11,-27, was seen. RT-PCR and immunohistochemistry confirmed altered gene expression. CONCLUSION. The gene profiles of normal, small and massive RC tear groups suggested they are biologically distinct groups. In addition to confirming altered gene expression in pathways reported in previous studies, this study has identified a number of novel pathways which are affected between the different tendon tear and normal groups. This study identified that RC tear pathogenesis is contributed to by ECM remodeling genes, chemotaxis genes, aggrecan and amyloid. Further investigation is required to determine whether some of these genes may potentially have a role as biomarkers of failure. Modulating these ECM pathways may be a useful treatment strategy for improving clinical outcomes


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_19 | Pages 1 - 1
1 Nov 2017
Mthethwa J Keen J
Full Access

Enterococcus faecalis is a rare but recognized cause of prosthetic joint infection. It is notorious for formation of biofilm on prosthetic surfaces. We hypothesized that a ‘serum factor’ was responsible for transformation of E. faecalis from its planktonic form to a biofilm existence upon making contact with prostheses. Using a novel ‘proteomic approach’, we studied the protein expression profiles of this bacterium when grown on an artificial surface in a serum environment against a control. E.faecalis 628 transconjugant formed by conjugation clinical strain (E55) and laboratory strain (JH2-2) was used to inoculate each of rabbit serum (RS) and Brain Heart Infusion (BHI) agar as a control and grown for 24 hours. Proteins were harvested for analysis in fractions including cell surface, membrane and cytosolic proteins. Recovered proteins were separated using 2-dimentional polyacrylamide gel electrophoresis (2D PAGE). Gels were stained and spots of interest harvested. These were analyzed using MALDI mass spectrometry followed by peptide mass fingerprinting using online database searches. Two surface exclusion proteins Sea1 and PrgA were only expressed from the serum culture. These proteins are both encoded by genes very close to the gene for enterococcal aggregation substance PrgB, which plays an integral role in biofilm formation. PrgA and PrgB are both encoded by the prgQ operon and hence expressed simultaneously upon activation of the operon. This tendency for serum only protein expression suggests the possibility of a pheromone-like activator in serum that could be a potential therapeutic target for management of biofilm associated E. faecalis prosthetic infections


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_18 | Pages 2 - 2
1 Nov 2017
Young PS Greer AIM Tsimbouri MP Meek RMD Gadegaard N Dalby MJ
Full Access

Osteoporosis is a major healthcare burden, responsible for significant morbidity and mortality. Manipulating bone homeostasis would be invaluable in treating osteoporosis and optimising implant osseointegration. Strontium increases bone density through increased osteoblastogenesis, increased bone mineralisation, and reduced osteoclast activity. However, oral treatment may have significant side effects, precluding widespread use. We have recently shown that controlled disorder nanopatterned surfaces can control osteoblast differentiation and bone formation. We aimed to combine the osteogenic synergy of nanopatterning with local strontium delivery to avoid systemic side effects. Using a sol-gel technique we developed strontium doped and/or nanopatterned titanium surfaces, with flat titanium controls including osteogenic and strontium doped media controls. These were characterised using atomic force microscopy and ICP-mass spectroscopy. Cellular response assessed using human osteoblast/osteoclast co-cultures including scanning electron microscopy, quantitative immunofluorescence, histochemical staining, ELISA and PCR techniques. We further performed RNAseq gene pathway combined with metabolomic pathway analysis to build gene/metabolite networks. The surfaces eluted 800ng/cm2 strontium over 35 days with good surface fidelity. Osteoblast differentiation and bone formation increased significantly compared to controls and equivalently to oral treatment, suggesting improved osseointegration. Osteoclast pre-cursor survival and differentiation reduced via increased production of osteoprotegrin. We further delineated the complex cellular signalling and metabolic pathways involved including unique targets involved in osteoporosis. We have developed unique nanopatterned strontium eluting surfaces that significantly increase bone formation and reduce osteoclastogenesis. This synergistic combination of topography and chemistry has great potential merit in fusion surgery and arthroplasty, as well as providing potential targets to treat osteoporosis


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 963 - 971
1 Aug 2022
Sun Z Liu W Liu H Li J Hu Y Tu B Wang W Fan C

Aims

Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries.

Methods

This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter. . Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment. Cite this article: Bone Joint J 2015; 97-B:1144–51


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 56 - 56
1 Apr 2013
Dogaki Y Niikura T Lee S Koga T Okumachi E Waki T Kurosaka M
Full Access

Introduction. Our previous study using microarray analysis showed that Rad (Ras associated with diabetes) was highly expressed in nonunion. The purpose of this study is to investigate the gene expression and immunolocalization of Rad, and other Ras-related G proteins: Rem1 and Rem2 in fracture/nonunion site using rat experimental models. Hypothesis. We hypothesized that Rad had a significant role in nonunion formation. Materials & Methods. For standard healing model, K-wire was inserted into the femur and a closed fracture was created. Nonunion model was produced by periosteal cauterization at the fracture site. At post-fracture days 3, 7, 10, 14, 21, and 28, RNA was extracted from callus or fibrous tissue for real-time PCR. At day 14, specimens were harvested for immunohistochemistry. Results. Significant difference of Rad gene expression was not observed between standard healing fracture and nonunion at the earlier time points. In contrast, significantly higher expression in nonunion was observed at the later time points. There were no significant differences between standard healing fracture and nonunion in gene expression of Rem1 and Rem2. In immunohistochemical analysis, Rad and Rem1 were detected in the fracture site, and Rem2 was not detected. On the other hand, Rad was only detected in fibrous tissue in nonunion. Discussion & Conclusion. Our results suggest a significant role of Rad in fracture healing and nonunion formation. Rad may become a target agent for treatment of nonunion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 72 - 72
1 Apr 2013
Fahlgren A Madsen R Om B
Full Access

Mechanical loading of bone is anabolic, while aseptic loosening of implants is catabolic. In a rat model of mechanically induced aseptic loosening, osteoclast differentiation is increased dramatically but the underlying mechanism is unknown. The objective was to profile molecular pathways in peri-implant bone resorption. Microarrays on cortical bone samples exposed to pressurized fluid flow were performed 3, 6, 12, 24 and 36 hrs, using time 0 as controls. Of a total of 4093 genes that underwent a 1.25-fold change (p<0.05) due to fluid flow only 21 were common for all time points. Signals linked to inflammation and apoptosis were regulated in a biphasic manner at 3 and 12 and/or 24 hrs. The acute response at 3 hrs was associated with increases in the cytokines IL-6, IL-11, LIF and STAT3. Levels of the pro-apoptotic factor TWEAK were higher while those of BOK, a second pro-survival molecule, were lower. There is an early and late rise in RIPK3, which stimulates a form of programmed necrosis. Osteoblast-related genes were clearly suppressed (osteocalcin, Col1a, PTHr1), while those regulating macrophage and osteoclast differentiation (CSF-1, Bach1, HO-1, RANKL, RANK, OPG) were enhanced. These data suggest that mechanical loading of cortical bone stimulates time-dependent expression of genes regulating the survival, necrosis and differentiation of both the myeloid and mesenchymal cell lineages, resulting in an integrated response leading to a rapid increase in osteoclast numbers


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 84 - 84
1 Apr 2013
Koga T Niikura T Lee SY Dogaki Y Okumachi E Waki T Kurosaka M
Full Access

Introduction. The hematoma occurring at a fracture site is known to play an important role in fracture healing. Previously, we demonstrated that fracture hematoma contained multilineage mesenchymal progenitor cells. On the other hand, the process of fracture healing is associated by two different mechanisms, intramembranous and endochondral. However, there are no reports proving the details about cellular analysis in the process of endochondoral ossification. Hypothesis. We hypothesized that one of the cell origins for endochondral ossification after fracture was hematoma. Materials & Methods. Fracture hematoma was obtained during osteosynthesis. Hematoma-derived cells were isolated and cultured for 5-weeks of chondrogenic induction followed by 2-weeks hypertrophic induction using pellet culture system. The pellets were analyzed histologically and immunohistochemically. The gene expression levels of chondrogenic, hypertrophic, osteogenic and angiogenic markers were measured by real-time PCR. Results. The histological and immunohistochemical analysis revealed that the Hematoma-derived cells differentiated into hypertrophic chondrocytes through chondrocytes, and finally differentiate into calcifying chondrocytes. The same trend was seen in the gene expression using real-time PCR analysis. Discussion & Conclusions. Our results suggest that fracture hematoma may be an origin of cells which play key roles in the process of endochondoral ossification during fracture healing


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 34 - 34
1 Apr 2013
Koga T Niikura T Lee SY Dogaki Y Okumachi E Waki T Ueha T Sakai Y Oe K Miwa M Kurosaka M
Full Access

Introduction. It is well known that blood flow is a critical key component of fracture repair. Previously, we demonstrated that transcutaneous application of CO2 increased blood flow in the human body. To date, there has been no report investigating the effect of the carbonated therapy on fracture repair. Hypothesis. We hypothesized that the transcutaneous application of CO2 to fracture site would accelerate fracture repair. Materials & Methods. A closed femoral shaft fracture was produced in rats. Transcutaneous CO2 absorption enhancing hydrogel and CO2 adaptor that sealed the body surface and retained the gas inside were used for CO2 treatment. Rats without CO2 treatment served as control. Radiographic, biomechanical and histological analysis was performed to assess the fracture repair. Gene expression of chondrogenic, hypertrophic, osteogenic and angiogenic markers was measured by real-time PCR at 1, 2, 3, and 4 weeks post-fracture. Results. Union rate, biomechanical properties, and gene expression of chondrogenic, hypertrophic, osteogenic and angiogenic markers was significantly higher in CO2 group compared to control group. Histological evaluation demonstrated that enchondral ossification was promoted in CO2 group. Discussion & Conclusions. Our study indicate that transcutaneous application of CO2 accelerates fracture repair via acceleration of endochondral ossification and vascularization, and may become a novel and useful therapy for promoting fracture repair


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 32 - 32
1 Apr 2013
Lee S Niikura T Koga T Dogaki Y Okumachi E Waki T Kurosaka M
Full Access

Introduction. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance healing of fracture and nonunion. Bone morphogenetic protein-7 (BMP-7) has also been reported to promote bone formation. Recently, we demonstrated progenitor cells with osteogenic/chondrogenic differentiation potential existed in human fracture hematoma and nonunion tissue. Hypothesis. We hypothesised the combined application of LIPUS and BMP-7 would cause major effect on osteogenesis of hematoma-derived cells (HCs) and nonunion tissue-derived cells (NCs). Materials & Methods. HCs and NCs were isolated, and cultured. The cells were divided into two groups: (1) BMP-7 group: cells cultured in osteogenic medium (OM), and (2) BMP-7 + LIPUS group: cells cultured in OM with LIPUS treatment. LIPUS (30 mW/cm2, intensity at 1.5 MHz) was given for 20 minutes daily. Osteogenic differentiation potential and proliferation were analysed. Results. ALP activity, the gene expression of osteogenic genes, and mineralisation of HCs and NCs were shown to be higher in BMP-7 + LIPUS group than in BMP-7 group. There was no significant difference in cell proliferation between the two groups. Discussion. Our findings demonstrated the significant effect of LIPUS on the osteogenic differentiation of HCs and NCs induced by BMP-7. This study may provide significant evidence for the clinical combined application of BMP-7 and LIPUS for the treatment of severe bone fracture and nonunion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 24 - 24
1 Apr 2013
Kawakami Y Kuroda T Matsumoto T Kwon S Ii M Kawamoto A Mifune Y Shoji T Kuroda R Kurosaka M Asahara T
Full Access

Introduction. CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction contributes to the regulation of endotherial progenitor cell (EPC) recruitment in ischemic tissues. The purpose of this study is to investigate the mechanistic function of CXCR4 on EPCs for bone fracture healing. Materials and methods. We made CXCR4 gene knockout mice using the Cre/loxP system. A reproducible model of femoral fracture was created in both Tie2-Cre CXCR4 knockout mice (CXCR4KO) and wild type mice (control). To evaluate gain function of the SDF-1/CXCR4 pathway, we set three groups of the SDF-1 intraperitoneally injected group, wild type group, and SDF-1 injected CXCR4 KO group. Results. In morphological examinations, relative callus area at week 2 was significantly greater in control group. Real time RT-PCR analysis showed that the gene expressions of angiogenic and osteogenic markers were higher in wild type group. CXCR4KO group represented a significantly lower perfusion value at fracture site than control group. In gain function study, the fracture in the SDF-1 injected group is significantly faster healed. Conclusion. Our results indicated the significance of SDF-1/CXCR4 signal in EPCs to bone fracture healing. This study also suggested that the promotion of CXCR4/SDF-1 signal on EPCs lead to the acceleration of bone fracture healing for new therapeutic strategies to fracture repair


Bone & Joint Research
Vol. 1, Issue 8 | Pages 174 - 179
1 Aug 2012
Alfieri KA Forsberg JA Potter BK

Heterotopic ossification (HO) is perhaps the single most significant obstacle to independence, functional mobility, and return to duty for combat-injured veterans of Operation Enduring Freedom and Operation Iraqi Freedom. Recent research into the cause(s) of HO has been driven by a markedly higher prevalence seen in these wounded warriors than encountered in previous wars or following civilian trauma. To that end, research in both civilian and military laboratories continues to shed light onto the complex mechanisms behind HO formation, including systemic and wound specific factors, cell lineage, and neurogenic inflammation. Of particular interest, non-invasive in vivo testing using Raman spectroscopy may become a feasible modality for early detection, and a wound-specific model designed to detect the early gene transcript signatures associated with HO is being tested. Through a combined effort, the goals of early detection, risk stratification, and development of novel systemic and local prophylaxis may soon be attainable.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 33 - 33
1 Sep 2012
Griffin M Iqbal S Sebastian A Colthurst J Bayat A
Full Access

Introduction. Nonunions pose complications in fracture management that can be treated using electrical stimulation (ES). Bone marrow mesenchymal stem cells (BMMSCs) are essential in fracture healing, although the effects of different clinical ES waveforms available in clinical practice on BMMSCs cellular activities is unknown. Materials and Methods. We compared Direct Current (DC), Capacitive Coupling (CC), Pulsed Electromagnetic wave (PEMF) and Degenerate Wave (DW) by stimulating human-BMMSCs for 5 days for 3 hours a day. Cytotoxicity, cell proliferation, cell-kinetics and cell apoptosis were evaluated after ES. Migration and invasion were assessed using fluorescence microscopy and affected gene and protein expression were quantified. Results. DW had the greatest proliferative and least apoptotic and cytotoxic effects compared to other waveforms and unstimulated cells after 5 days of ES (p < 0.001). DC, DW and CC resulted in significantly more cells in S phase and G2/M phase (p < 0.01) compared to the unstimulated BMMSCs. CC and DW caused more cells to invade collagen and showed increased MMP-2 and MT1-MMP expression (p < 0.001) compared to the other waveforms and unstimulated BMMSCs. DC increased cellular migration in a scratch-wound assay and all ES waveforms increased migration gene expression with DC having the greatest effect (p < 0.01). Conclusion. The ES waveform is vital in influencing BMMSCs cellular activities. Migration and invasion were increased by ES which suggests that the recruitment of BMMSCs to the healing site during a fracture could be increased by ES


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 197 - 197
1 Sep 2012
Benazzo F Gastaldi G Fontana J Marullo M
Full Access

Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in vivo biocompatibility: it can be used in biomedical applications to promote osteointegration demonstrating that it can be successfully used for regenerative medicine in orthopaedic surgery (1). Purpose of this investigation was to evaluate the behavior of adipose tissue derived stem cells (hASCs) cultured on scaffolds of Trabecular TitaniumTM (Lima-Lto) (TT). hASCs are considered to be multipotent mesenchymal stem cells that are easily induced to differentiate into functional osteoblasts both in vitro and in vivo (2). The hASCs were obtained from the subcutaneous adipose tissue of healthy donors during total hip replacement procedures after digestion with collagenase. They were seeded on monolayer and on the TT scaffolds, and incubated at 37 degrees C in 5% CO2 with osteogenic medium or control medium. The expression of bone-related genes using RT-PCR, time course of alkaline phosphatase activity and morphological investigation with Scanning Electron Microscopy (SEM) were performed to evaluate the osteogenic differentiation of hASCs. Alkaline phosphatase activity, marker of the differentiation toward the osteogenic pattern, was significantly higher in hASCs grown with osteogenic medium than in cells grown with control medium, both in monolayer and TT scaffolds; moreover, also alkaline phosphatase of hASCs grown on TT scaffolds in the presence of control medium increased with time, differently from that of cells grown on monolayer. The osteogenic differentiated hASCs expressed the bone-related genes type I collagen, osteocalcin, Runx-2 and alkaline phosphatase. SEM observations showed that hASCs differentiated toward osteoblast-like cells: they produced a big amount of extracellular matrix that covered the surface of the porous scaffolds with bridges between the pore walls. These data suggest that hASCs are able to adhere to TT scaffolds, to acquire an osteoblastic phenotype and to produce abundant extracellular matrix, with but also without osteogenic medium. We can therefore conclude that this material carries osteinductive properties being responsible of ostegenic differentiation; consequently, this scaffold/cells construct is effective to regenerate damaged tissue and to restore the function of bone tissue


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_18 | Pages 7 - 7
1 Nov 2016
Murray I Gonzalez Z Baily J Iredale J Simpson H Peault B Henderson N
Full Access

Scar tissue formation secondary to acute muscle injury, surgical wounding and compartment syndrome can result in significant functional impairment and predispose to further injury. The source of fibroblasts, and the molecular mechanisms driving their activation and persistence in skeletal muscle fibrosis are not known. We hypothesized that cells expressing PDGFRβ become fibroblasts in response to injury and that targeting αv integrins in these cells reduces skeletal muscle fibrosis. We used double-fluorescent reporter mice to demonstrate that cells expressing PDGFRβ become activated myofibroblasts in response to cardiotoxin (CTX) induced skeletal muscle injury. Following injury, PDGFRβ+ cells moved from perivascular locations into the interstitium in a distribution characteristic of fibroblasts, and showed marked induction of fibroblastic genes including αSMA and collagen1 (all p<0.0001). To confirm that αv integrins present on PDGFRβ cells critically regulate skeletal muscle fibrosis we used Itgavflox/flox;PDGFRβ-Cre mice (transgenic mice in which αv integrins are ‘knocked-down’ in PDGFRβ+ cells). These mice were significantly protected from CTX induced fibrosis (p<0.01). To demonstrate potential clinical utility of targeting αv integrins, we used a small molecule inhibitor of αv integrins (CWHM12). Treatment with CWHM12 significantly reduced fibrosis when delivered from the time of injury (p<0.01) and when delivered after the fibrotic response had become established (p<0.01). We have identified a core pathway regulating fibrosis in skeletal muscle. Pharmacologic inhibition of αv integrins has potential clinical utility in the treatment and prevention of skeletal muscle fibrosis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 91 - 91
1 Apr 2013
Okumachi E Lee SY Niikura T Koga T Dogaki Y Waki T Kurosaka M
Full Access

Introduction. Recently, some case reports have been published, in which nonunions were successfully healed with parathyroid hormone 1–34 (PTH) administration. Previously, we demonstrated that the intervening tissue at the nonunion site contains multilineage mesenchymal progenitor cells and plays an important role during the healing process of nonunion. We investigated the effect of PTH on osteogenic differentiation of human nonunion tissue-derived cells (NCs) in vitro. Hypothesis. We hypothesized that PTH directly promoted osteogenic differentiation of NCs. Materials & Methods. NCs were isolated from 4 patients, and cultured. The cells were divided into two groups: (1) PTH (−) group: cells cultured in osteogenic medium (OM), (2) PTH (+) group: cells cultured in OM with PTH. Osteogenic differentiation potential was analyzed. Results. Real-time PCR analysis showed that gene expression levels of Runx2, ALP, OC and PTHR1 in PTH (+) group were lower than PTH (−) group at day 14. In both groups, there was no significant difference in ALP activity at days 8 and 14, and in the intensity of Alizarin red S staining at day 20. Discussion. Treatment of PTH did not lead to increase osteogenic differentiation of NCs. Nonunion healing by PTH administration may be caused by other mechanisms such as mobilization and recruitment of osteoprogenitor cells


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 520 - 520
1 Sep 2012
Xu Y Rudkjoebing V Simonsen O Pedersen C Schoenheyder H Nielsen P Thomsen T
Full Access

Prosthetic joint infection is one of the most challenging complications of joint alloplasty and the diagnosis remains difficult. The aim of the study was to investigate the bacterial flora in surgical samples from 22 prosthetic patients using a panel of culture-independent molecular methods including broad range 16S rRNA gene PCR, cloning, sequencing, phylogeny, quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH). Concomitant samples were cultured by standard methods. Molecular methods detected presence of bacteria in samples from 12 of 22 patients. Using clone libraries a total of 40 different bacterial species were identified including known pathogens and species not previously described in association with prosthetic joint infections. The predominant species were Propionibacterium acnes and Staphylococcus epidermidis; polymicrobial infections were found in 9 patients. Culture-based methods showed bacterial growth in 8 cases with the predominant species being S. epidermidis. Neither anaerobic bacteria (including P. acnes) nor any of the species not previously described in implant infections were isolated. Additionally, 7 of the 8 culture positive cases were monomicrobial. Overall, the results of culture-based and molecular methods showed concordance in 11 cases (hereof 9 negative by both methods) and discrepancy in 6 cases. In the remaining 5 cases, culture-based methods identified only one species or a group of bacteria (e.g., coagulase negative staphylococci or coryneform rods), while culture-independent molecular methods were able to detect several distinct bacterial species including a species within the group identified by culture. A qPCR assay was developed to assess the abundance of Propionibacterium while S. aureus was quantified by a published S. aureus qPCR assay. These quantifications confirmed the findings from the clone library approach and showed the potential of qPCR for fast detection of bacteria in orthopedic samples. Additionally, both single cells and microcolonies were visualized using FISH and confocal scanning laser microscopy. In conclusion, the molecular methods detected a more diverse bacterial flora in prosthetic joint infections than revealed by standard culture-based methods, and polymicrobial infections were more frequently observed. The pathogenesis of these microorganisms and their role in implant-associated infections needs to be determined


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 109 - 114
1 Jan 2015
Haller JM Holt DC McFadden ML Higgins TF Kubiak EN

The aim of this study was to report the incidence of arthrofibrosis of the knee and identify risk factors for its development following a fracture of the tibial plateau. We carried out a retrospective review of 186 patients (114 male, 72 female) with a fracture of the tibial plateau who underwent open reduction and internal fixation. Their mean age was 46.4 years (19 to 83) and the mean follow-up was16.0 months (6 to 80).

A total of 27 patients (14.5%) developed arthrofibrosis requiring a further intervention. Using multivariate regression analysis, the use of a provisional external fixator (odds ratio (OR) 4.63, 95% confidence interval (CI) 1.26 to 17.7, p = 0.021) was significantly associated with the development of arthrofibrosis. Similarly, the use of a continuous passive movement (CPM) machine was associated with significantly less development of arthrofibrosis (OR = 0.32, 95% CI 0.11 to 0.83, p = 0.024). The effect of time in an external fixator was found to be significant, with each extra day of external fixation increasing the odds of requiring manipulation under anaesthesia (MUA) or quadricepsplasty by 10% (OR = 1.10, p = 0.030). High-energy fracture, surgical approach, infection and use of tobacco were not associated with the development of arthrofibrosis. Patients with a successful MUA had significantly less time to MUA (mean 2.9 months; sd 1.25) than those with an unsuccessful MUA (mean 4.86 months; sd 2.61, p = 0.014). For those with limited movement, therefore, performing an MUA within three months of the injury may result in a better range of movement.

Based our results, CPM following operative fixation for a fracture of the tibial plateau may reduce the risk of the development of arthrofibrosis, particularly in patients who also undergo prolonged provisional external fixation.

Cite this article: Bone Joint J 2015;97-B:109–14.