Introduction and Objective. Only few studies have investigated the outcome of exercises in patients with
This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the
Summary. Analysis of existing data of patients who had undergone debridement procedure for osteoarthritis (OA) of
Magnetic resonance imaging (MRI) is the gold standard for the diagnosis of the pathologies affecting the
Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to
To analyse bone stresses in humerus-megaprosthesis construct in response to axial loading under varying implant lengths in proximal humeral replacement following tumour excision. CT scans of 10 cadaveric humeri were processed in 3D Slicer to obtain three-dimensional (3D) models of the cortical and cancellous bone. Megaprostheses of varying body lengths (L) were modelled in FreeCAD to obtain the 3D geometry. Four FE models: group A consisting of intact bone; groups B (L=40mm), C (L=100mm) and D (L=120mm) comprising of humerus-megaprosthesis constructs were created. Isotropic linear elastic behaviour was assigned for all materials. A tensile load of 200N was applied to the elbow joint surface with the
Background. While total shoulder arthroplasty (TSA) is a generally successful procedure, glenoid loosening remains a common complication. Though the occurrence of loosening was related to patient-specific factors, biomechanical factors related to implant features may also affect the fixation of the glenoid component, in particular increased
Introduction. Glenoid loosening, still a main complication for shoulder arthroplasty, was suggested to be related implant design, surgical aspects, and also bone quality. However, typical studies of fixation do not account for heterogeneity in bone morphology and density which were suggested to affect fixation failure. In this study, a combination of cyclic rocking horse tests on cadaver specimens and microCT-based finite element (microFE) analysis of specimens of a wide range of bone density were used to evaluate the effects of periprosthetic bone quality on the risks of loosening of anatomical keeled or pegged glenoid implants. Methods. Six pairs of cadaveric scapulae, scanned with a quantitative computer tomography (QCT) scanner to calculate bone mineral density (BMD), were implanted with either cemented anatomical pegged or keeled glenoid components and tested under constant
Tear pattern and tendon involvement are risk factors for the development of a pseudoparalytic shoulder. However, some patients have similar tendon involvement but significantly different active forward flexion. In these cases, it remains unclear why some patients suffer from pseudoparalysis and others with the same tear pattern show good active range of motion. Moment arms (MA) and force vectors of the RC and the deltoid muscle play an important role in the muscular equilibrium to stabilize the
Introduction and Objective. Curative resection of proximal humerus tumours is now possible in this era of limb salvage with endoprosthetic replacement considered as the preferred reconstructive option. However, it has also been linked with mechanical and non-mechanical failures such as stem fracture and aseptic loosening. One of the challenges is to ensure that implants will endure the mechanical strain under physiological loading conditions, especially crucial in long surviving patients. The objective is to investigate the effect of varying prosthesis length on the bone and implant stresses in a reconstructed humerus-prosthesis assembly after tumour resection using finite element (FE) modelling. Methods. Computed tomography (CT) scans of 10 humeri were processed in Mimics 17 to create three-dimensional (3D) cortical and cancellous solid bone models. Endoprostheses of different lengths manufactured by Stryker were modelled using Solidworks 2020. The FE models were divided into four groups namely group A consisting of the intact humerus and groups B, C and D composed of humerus-prosthesis assemblies with a body length of 40, 100 and 120 mm respectively and were meshed using linear 4-noded tetrahedral elements in 3matic 13. The models were then imported into Abaqus CAE 6.14. Isotropic linear elastic behaviour with an elastic modulus of 13400, 2000 and 208 000 MPa were assigned to the cortical bone, cancellous bone and prosthesis respectively and a Poisson's ratio of 0.3 was assumed for each material. To represent the lifting of heavy objects and twisting motion, a tensile load of 200 N for axial loading and a 5 Nm torsional load for torsional loading was applied separately to the elbow joint surface with the
Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the
Arthritis of the
Latarjet procedure (transfer of coracoid process to the anterior glenoid rim) has been widely used for severe anterior shoulder instability. The purpose of the present study was to investigate the intraarticular stress distribution after this procedure to clarify the pathomechanism of its postoperative complications. CT-DICOM data of the contralateral healthy shoulder in 10 patients with unilateral anterior shoulder instability (9 males and 1 female, age: 17–49) was used for the present study. Three-dimensional finite element models of the
Differential strain has been proposed to be a causative factor in failure of the supraspinatus tendon. We quantified the strains on the joint and bursal sides of the supraspinatus tendon with increasing load (20 to 200 N) and during 120° of
Using a dynamic biomechanical model of malunion of the shoulder, we have determined the change in deltoid force required for abduction with various combinations of superior and posterior displacement of fractures of the greater tuberosity of the humerus. We tested eight fresh human cadaver shoulders in a dynamic shoulder-testing apparatus during cycles of
Background. Despite arthroscopy being the gold standard for long head of biceps pathology, the literature is seemingly lacking in any critical appraisal or validation to support its use. The aim of this study was to evaluate its appropriateness as a benchmark for diagnosis. The objectives were to evaluate whether the length of the tendon examined at arthroscopy allows visualisation of areas of predilection of pathology and also to determine the rates of missed diagnoses when compared to an open approach. Methods. A systematic review of cadaveric and clinical studies was performed. The search strategy was applied to Medline, PubMed and Google Scholar databases. All relevant articles were included. Critical appraisal of clinical studies was performed using a validated quality assessment scale. Results. Six articles were identified for inclusion in the review. This included both clinical and cadaveric studies. The overall population comprised 25 cadaveric specimens and 575 patients. Cadaveric studies showed that the use of a hook probe allowed arthroscopic visualisation of between 28% and 48% of the overall length of the LHB. In the clinical series the rate of missed diagnoses at arthroscopy when compared to open exploration ranged between 33% and 49%. Conclusions. The standard technique of pulling the LHB tendon into the joint at
Treatment of massive rotator cuff tears can be challenging. Previous studies with irreparable rotator cuff tears showed good clinical results of tendon healing with the arthroscopic insertion of a protective biodegradable spacer balloon filled with saline solution between the repaired tendon and the acromion [1,2], but so far no scientific evidence has showed how the device alters pressures over the repaired tendon. This biomechanical study investigated the effects of a spacer inserted in the subacromial space on pressures over the repaired rotator cuff tendon in passive motion cycles typical for post-operative rehabilitation routines. Six human cadaveric shoulders were prepared with the humerus cut 15cm below the joint and embedded in a pot, while the scapula fixed at three points on a plate. A rotator cuff tear was simulated and repaired using a suture anchor and a Mason-Allen suture. The specimens were then mounted on a custom-made pneumatic testing rig to induce passive motion cycles of adduction-abduction (90–0°) and flexion-extension (0–40°) with constant
Summary. Data of 663 patients with three different pathologies were examined. We found that using patients with significant symptoms and functional difficulty in the opposite shoulder will not bias the results of observational studies if outcomes are based on routine disability measures such as ASES or Constant-Murley scores. Introduction. Recently, using patients with bilateral limb problems as independent cases has raised concerns in orthopaedic research due to violating the assumption of independence. If observations are too similar in characteristics, they become highly correlated which leads to lowering the variance and biasing the results. Type of pathology (impingement, cuff tear, osteoarthritis) and aging are expected to affect the incidence of bilateral shoulder complaints and should be considered when examining potential bias in this area. In addition, the impact of dominant side pathology has not been investigated primarily in patients with shoulder problems. The objectives of this study were: 1) to examine the incidence of bilateral shoulder complaints and pathology on the dominant side in patients with impingement syndrome, rotator cuff tear and osteoarthritis of the
Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes. A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.Objectives
Methods