Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for large osteochondral defect treatment. For this purpose, different proportions of graphene- containing (1%,3%,5%,10 wt%) PCL scaffolds were studied in a 5mm diameter osteochondral defect model created in the rabbit knee. Materials and Methods. In the study graphene-containing (1, 3, 5, 10 wt%), porous and oriented poly-ε-caprolactone-based scaffolds were prepared by robocasting method to use in the regeneration of large osteochondral defects. Methods: The scaffolds were implanted into the full-thickness osteochondral defect in a rabbit model to evaluate the regeneration of defect in vivo. For this purpose, twenty female New Zealand white rabbits were used and they were euthanized at 4 and 8 weeks of implantation. The reparative osteochondral tissues were harvested from rabbit distal femurs and then processed for gross appearance assessment, radiographic imaging, histopathological and
Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model. The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining,
Osteoarthritis, the most common degenerative joint disease, significantly impairs life quality and labor capability of patients. Synovial inflammation, initiated by HMGB1 (High mobility group box 1)-induced activation of macrophage, precedes other pathological changes. As an upstream regulator of NF-κB (nuclear factor-kappa B) and MAPK (mitogen-activated protein kinase) signaling pathway, TAK1 (TGF-β activated kinase 1) participates in macrophage activation, while its function in osteoarthritis remains unveiled. This study aims to investigate the role of TAK1 in the pathogenesis of osteoarthritis via both in vitro and in vivo approaches. We performed
For patients who took joint replacement, one of the complications, aseptic joint loosening, could cause a high risk of revision surgery. Studies have shown that MSCs have the ability of homing and differentiating, and also have highly effective immune regulation and anti-inflammatory effects. However, few studies had focused on the stem cells in preventing the occurrence and development of aseptic loosening. In this research, we aimed to clarify whether human umbilical cord mesenchymal stem cells could inhibited the aseptic joint loosening caused by wear particles. A Cranial osteolysis mice model was established on mice to examine the effect of hUC-MSCs on the Titanium particles injection area through micro-CT. The amount of stem cells injected was 2 × 10 5 cells. One week later, the mouse Cranial were obtained for micro-CT scan, and then stained with HE analysis
Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or adipose tissue, chondrocytes, notochordal cells and more recently also pluripotent stem cells. However, none was fully satisfactory since the NP acid and a-vascularized environment appeared averse to the implanted heterologous cells. Several studies demonstrated the efficacy of platelet derivatives such as platelet rich plasma (PRP) in promoting the regeneration of connective tissues. We investigated the efficacy of PRP on NPCs proliferation and differentiation with the goal to propose the direct stimulation of resident cells (stimulation of endogenous cells – less invasive surgical procedure) or the implantation of NPCs expanded in vitro in the presence of PRP as therapeutic agents in IVD degeneration. NPCs were isolated from small fragments of NP explants, cultivated in medium supplemented with PRP or FCS (standard condition control) and characterized by FACS analysis for the expression of the typical mesenchymal stem cells markers CD34, CD44, CD45, CD73, CD90 and CD105. NPCs cultured in PL showed a phenotypic profile like the cells cultured in FCS. However, compared to NPCs expanded in the presence of FCS, NPCs expanded in PRP showed a much better proliferation and differentiation capacity. NPCs differentiation was evaluated by the cell ability to produce an organized metachromatic cartilaginous matrix, confirmed by the positive
Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The
In the field of tissue engineering (TE), mainly two approaches have been widely studied and utilised throughout the last two decades. Ovsianikov et al. proposed a third strategy for tissue engineering to combine the advantages of the scaffold-based and scaffold-free approach [1]. We utilise the third strategy for TE by fabrication of cell spheroids that are reinforced by microscaffolds, called tissue units (TUs). Aim of the presented study is to differentiate TUs towards a chondrogenic phenotype to show the self-assembly of a millimetre sized cartilage-like tissue in a bottom-up TE approach in vitro. Two-Photon polymerization (2PP) was utilised to fabricate highly porous microscaffolds with a diameter of 300 µm. The biocompatible and biodegradable, resin Degrad INX (supplied from Xpect INX, Ghent, Belgium) was used for 3D-printing. Each microscaffold was seeded with 4000 human adipose derived stem cells (hASCs) in low-adhesive 96-well plates to allow spheroid formation. TUs were differentiated towards the chondrogenic lineage by application of chondrogenic media, subsequently merged in a cylindrical agarose mold, to fuse into a connected tissue with a diameter of ~1.8 mm and a height of 8 mm. The characterization of TUs differentiated towards the chondrogenic phenotype included gene expression and protein analysis. Furthermore,
Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological,
Digital Ventilated Cages (DVC) offer an innovative technology to obtain accurate movement data from a single mouse over time [1]. Thus, they could be used to determine the occurrence of a tendon damage event as well as inform on tissue regeneration [2,3]. Therefore, using the mouse model of tendon experimental damage, in this study it has been tested whether the recovery of tissue microarchitecture and of extracellular matrix (ECM) correlates with the motion data collected through this technology. Mice models were used to induce acute injury in Achilles tendons (ATs), while healthy ones were used as control. During the healing process, the mice were housed in DVC cages (Tecniplast) to monitor animal welfare and to study biomechanics assessing movement activity, an indicator of the recovery of tendon tissue functionality. After 28 days, the AT were harvested and assessed for their histological and
We have developed plasmonic fibrin-based hydrogels that incorporate gold nanoparticles which transduce incident near-infrared (NIR) light into heat. Human adenovirus serotype type-5 vectors encoding a firefly luciferase (fLuc) coding sequence driven by a heat-inducible promoter were incorporated into the hydrogels. Transmission electronic microscopic analysis revealed that the adenoviral vectors were associated to the fibrin fibers. In vitro experiments in which human cells were cultured with plasmonic hydrogels showed that the adenoviral vectors can diffuse from the hydrogels, transduce the cells, and stimulate heat-induced transgene expression upon NIR irradiation. The hydrogels were implanted in 4.2 mm drill hole defects generated in the humerus of male rabbits. Three days after implantation, the defects were NIR-irradiated. Six h later, the animals were euthanized and samples from the bone defect zone were processed for
TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis. PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed
Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static compression tests and digital image correlation (DIC) used to analyze full-field strain distribution. Bone resorbing cells and aromatase expression by osteocytes were evaluated
Introduction and Objective. Traditionally, osteoarthritis (OA) has been associated mostly with degradation of cartilage only. More recently, it has been established that other joint tissues, in particular bone, are also centrally involved. However, the link between these two tissues remains unclear. This relationship is particularly evident in post-traumatic OA (PTOA), where bone marrow lesions (BMLs), as well as fluctuating levels of inflammation, are present long before cartilage degradation begins. The process of bone-cartilage crosstalk has been challenging to study due to its multi-tissue complexity. Thus, the use of explant model systems have been crucial in advancing our knowledge. Thus, we developed a novel patellar explant model, to study bone cartilage crosstalk, in particular related to subchondral bone damage, as an alternative to traditional femoral head explants or cylindrical core specimens. The commonly used osteochondral explant models are limited, for our application, since they involve bone damage during harvest. The specifics aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response and mechanical stimulation to determine the subsequent developments of PTOA. Materials and Methods. Lewis rats (n=48) were used to obtain patellar and femoral head explants which were harvested under an institutional ethical approval license. Explants were maintained in high glucose media (containing supplements), under sterile culture conditions. Initially, we characterised undamaged patellar explants and compared them with the commonly used femoral head. First, tissue viability was assessed using an assay of metabolic activity and cell damage. Second, we created chemical and mechanical damage in the form of IL-1B treatment, and mechanical stimulation, to replicate damage. Standard biochemical assays, histological assays and microstructural assays were used to evaluate responses. For chemical damage, explants were exposed to 10ng/ml of IL-1B for 24 hours at 0, 1, 3 and 7 days after harvesting. For mechanical damage, tissues were exposed to mechanical compression at 0.5 Hz, 10 % strain for 10 cycles, for 7 days. Contralateral patellae served as controls. In both groups, sGAG, ADAMTS4, and MMP-13 were measured as an assessment of representative cartilage responses while ALP, TRAP and CTSK were assessed as a representative of bone responses. In addition to this, histomorphometric, and
Introduction and Objective. Global prevalence of obesity has risen almost three-fold between 1975 and 2016. Alongside the more well-known health implications of obesity such as cardiovascular disease, cancer and type II diabetes, is the effect of male obesity on testosterone depletion and hypogonadism. Hypogonadism is a well-known contributor to the acceleration of bone loss during aging, and obesity is the single biggest risk factor for testosterone deficiency in men. Understanding the micro and macro structural changes to bone in response to testosterone depletion in combination with a high fat ‘Western’ diet, will advance our understanding of the relationship between obesity and bone metabolism. This study investigated the impact of surgically induced testosterone depletion and subsequent testosterone treatment upon bone remodelling in mice fed a high fat diet. Materials and Methods. Male ApoE. −/−. mice were split into 3 groups at 7 weeks of age and fed a high fat diet: Sham surgery with placebo treatment, orchiectomy surgery with placebo treatment, and orchiectomy surgery with testosterone treatment. Surgeries were performed at 8 weeks of age, followed by fortnightly testosterone treatment via injection. Mice were sacrificed at 25 weeks of age. Tibiae were collected and scanned ex-vivo at 4.3μm on a SkyScan 1272 Micro-CT scanner (Bruker). Left tibiae were used for assessment of trabecular and cortical Volumes of Interest (VOIs) 0.2mm and 1.0mm respectively from the growth-plate bridge break. Tibiae were subsequently paraffin embedded and sectioned at 4μm prior to
Introduction and Objective. Bone is a tissue which continually regenerates and also having the ability to heal after injuries however, healing of large defects requires intensive surgical treatment. Bioactive glasses are unique materials that can be utilized in both bone and skin regeneration and repair. They are degradable in physiological fluids and have osteoconductive, osteoinductive and osteostimulative properties. Osteoinductive growth factors such as Bone Morphogenetic Proteins (BMP), Vascular Endothelial Growth Factor (VEGF), Epidermal Growth Factor (EGF), Transforming Growth Factor (TGF) are well known to stimulate new bone formation and regeneration. Unfortunately, the synthesis of these factors is not cost- effective and, the broad application of growth factors is limited by their poor stability in the scaffolds. Instead, it is wise to incorporate osteoinductive nanomaterials such as graphene nanoplatelets into the structures of synthetic scaffolds. In this study, borate-based 13-93B3 bioactive glass scaffolds were prepared by polymer foam replication method and they were coated with graphene-containing poly (ε-caprolactone) layer to support the bone repair and regeneration. Materials and Methods. Effects of graphene concentration (1, 3, 5, 10 wt%) on the healing of rat segmental femur defects were investigated in vivo using male Sprague–Dawley rats. Fabricated porous bioactive glass scaffolds were coated by graphene- containing polycaprolactone solution using dip coating method. The prepared 0, 1, 3, 5 and 10 wt% graphene nanoparticle-containing PCL-coated composite scaffolds were designated as BG, 1G-P-BG, 3G-P-BG, 5G-P-BG and 10G-P-BG, for each group (n: 4) respectively. Histopathological and
The effects of Hypericum perforatum on nerve regeneration after sciatic nerve injury have not yet been evaluated in all its aspects yet. In this experimental study, the effect of Hypericum perforatum on injured nerve tissue was histologically and biochemically investigated. Motor functional healing was surveyed by gait analysis. Rats were divided into 3 groups: Group I (n=8) was intact control group and no intervention and treatment was applied to this group. Group II (n=16) was surgical control group and Group III (n=16) was Hypericum perforatum group. After the operation, while any treatment was performed on Group II, 30 mg/kg dose Hypericum perforatum extract was intraperitoneally administered to the Group III per day for 8 weeks from the 1. st. day of post-op. Gait analysis was made to all rats for functional evaluation at 2. nd. , 3. rd. , 4. th. , 6. th. and 8. th. weeks, and sciatic functional index (SFI) was evaluated. At the end of the eighth week, sciatic nerve tissue samples were taken from the sacrificed rats. Tissues were examined biochemically, histologically and immnohistochemically. Malondialdehyde (MDA) as an indicator of oxidative stress and main antioxidant enzyme [superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)] levels were biochemically measured. The nerve degeneration and regeneration were histologically viewed, and also cell count was immnohistochemically done by having done anti-S100 staining. It was seen that measurement results of SFI were statistically significantly difference between groups (p<0,001). In the sciatic nerve tissue samples taken from the rats, it was not determined a statistically significant difference between MDA, SOD, GPx and CAT levels detected by ELISA method (p>0,05). In the histological evaluation, it was seen that Hypericum perforatum affected positively the regeneration and
Objectives. The need for bone tissue supplementation exists in a wide range
of clinical conditions involving surgical reconstruction in limbs,
the spine and skull. The bone supplementation materials currently
used include autografts, allografts and inorganic matrix components;
but these pose potentially serious side-effects. In particular the
availability of the autografts is usually limited and their harvesting
causes surgical morbidity. Therefore for the purpose of supplementation
of autologous bone graft, we have developed a method for autologous
extracorporeal bone generation. Methods. Human osteoblast-like cells were seeded on porous granules of
tricalcium phosphate and incubated in osteogenic media while exposed
to mechanical stimulation by vibration in the infrasonic range of
frequencies. The generated tissue was examined microscopically following
haematoxylin eosin, trichrome and
The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and
Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore,
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods