Advertisement for orthosearch.org.uk
Results 1 - 20 of 390
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1140 - 1146
1 Sep 2017
Shoji T Yamasaki T Izumi S Murakami H Mifuji K Sawa M Yasunaga Y Adachi N Ochi M

Aims. Our aim was to evaluate the radiographic characteristics of patients undergoing total hip arthroplasty (THA) for the potential of posterior bony impingement using CT simulations. Patients and Methods. Virtual CT data from 112 patients who underwent THA were analysed. There were 40 men and 72 women. Their mean age was 59.1 years (41 to 76). Associations between radiographic characteristics and posterior bony impingement and the range of external rotation of the hip were evaluated. In addition, we investigated the effects of pelvic tilt and the neck/shaft angle and femoral offset on posterior bony impingement. Results. The range of external rotation and the ischiofemoral length were significantly lower, while femoral anteversion, the ischial ratio, and ischial angle were significantly higher in patients with posterior bony impingement compared with those who had implant impingement (p <  0.05). The range of external rotation positively correlated with ischiofemoral length (r = 0.49, p < 0.05), and negatively correlated with ischial length (r = -0.49, p < 0.05), ischial ratio (r =- 0.49, p < 0.05) and ischial angle (r = -0.55, p < 0.05). The range of external rotation was lower in patients with posterior pelvic tilt (p < 0.05) and in those with a high offset femoral component (p < 0.05) due to posterior bony impingement. Conclusion. Posterior bony impingement after THA is more likely in patients with a wider ischium and a narrow ischiofemoral space. A high femoral offset and posterior pelvic tilt are also risk factors for this type of impingement. Cite this article: Bone Joint J 2017;99-B:1140–6


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims. The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI). Patients and Methods. A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded. Results. In these patients with cam-type FAI, there was significant correlation between the alpha angle and flexion to the point of impingement (mean 41.36°; 14.32° to 57.95°) (R = -0.5815 and p = < 0.001). Patients with a large cam deformity (alpha angle > 78°) had significantly less flexion to the point of impingement (mean 36.30°; 14.32° to 55.18°) than patients with a small cam deformity (alpha angle 60° to 78°) (mean 45.34°; 27.25° to 57.95°) (p = < 0.001). Conclusion. This study has shown that cam-type impingement can occur early in flexion (40°), particularly in patients with large anterior deformities. These patients risk chondrolabral damage during routine activities such as walking, and going up stairs. These findings offer important insights into the cause of the symptoms, the mechanisms of screening and the forms of treatment available for these patients. Cite this article: Bone Joint J 2017;99-B(4 Supple B):41–8


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 67 - 69
1 Nov 2013
Brooks PJ

Dislocation is one of the most common causes of patient and surgeon dissatisfaction following hip replacement and to treat it, the causes must first be understood. Patient factors include age greater than 70 years, medical comorbidities, female gender, ligamentous laxity, revision surgery, issues with the abductors, and patient education. Surgeon factors include the annual quantity of procedures and experience, the surgical approach, adequate restoration of femoral offset and leg length, component position, and soft-tissue or bony impingement. Implant factors include the design of the head and neck region, and so-called skirts on longer neck lengths. There should be offset choices available in order to restore soft-tissue tension. Lipped liners aid in gaining stability, yet if improperly placed may result in impingement and dislocation. Late dislocation may result from polyethylene wear, soft-tissue destruction, trochanteric or abductor disruption and weakness, or infection. Understanding the causes of hip dislocation facilitates prevention in a majority of instances. Proper pre-operative planning includes the identification of patients with a high offset in whom inadequate restoration of offset will reduce soft-tissue tension and abductor efficiency. Component position must be accurate to achieve stability without impingement. Finally, patient education cannot be over-emphasised, as most dislocations occur early, and are preventable with proper instructions. Cite this article: Bone Joint J 2013;95-B, Supple A:67–9


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1031 - 1035
1 Aug 2007
Dora C Houweling M Koch P Sierra RJ

We have reviewed a group of patients with iliopsoas impingement after total hip replacement with radiological evidence of a well-fixed malpositioned or oversized acetabular component. A consecutive series of 29 patients (30 hips) was assessed. All had undergone a trial of conservative management with no improvement in their symptoms. Eight patients (eight hips) preferred continued conservative management (group 1), and 22 hips had either an iliopsoas tenotomy (group 2) or revision of the acetabular component and debridement of the tendon (group 3), based on clinical and radiological findings. Patients were followed clinically for at least two years, and 19 of the 22 patients (86.4%) who had surgery were contacted by phone at a mean of 7.8 years (5 to 9) post-operatively. Conservative management failed in all eight hips. At the final follow-up, operative treatment resulted in relief of pain in 18 of 22 hips (81.8%), with one hip in group 2 and three in group 3 with continuing symptoms. The Harris Hip Score was significantly better in the combined groups 2 and 3 than in group 1. There was a significant rate of complications in group 3. This group initially had better functional scores, but at final follow-up these were no different from those in group 2. Tenotomy of the iliopsoas and revision of the acetabular component are both successful surgical options. Iliopsoas tenotomy provided the same functional results as revision of the acetabular component and avoided the risks of the latter procedure


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 556 - 560
1 May 2002
Nötzli HP Wyss TF Stoecklin CH Schmid MR Treiber K Hodler J

Impingement by prominence at the femoral head-neck junction on the anterior acetabular rim may cause early osteoarthritis. Our aim was to develop a simple method to describe concavity at this junction, and then to test it by its ability to distinguish quantitatively a group of patients with clinical evidence of impingement from asymptomatic individuals who had normal hips on examination. MR scans of 39 patients with groin pain, decreased internal rotation and a positive impingement test were compared with those of 35 asymptomatic control subjects. The waist of the femoral head-neck junction was identified on tilted axial MR scans passing through the centre of the head. The anterior margin of the waist of the femoral neck was defined and measured by an angle (α). In addition, the width of the femoral head-neck junction was measured at two sites. Repeated measurements showed good reproducibility among four observers. The angle α averaged 74.0° for the patients and 42.0° for the control group (p < 0.001). Significant differences were also found between the patient and control groups for the scaled width of the femoral neck at both sites. Using standardised MRI, the symptomatic hips of patients who have impingement have significantly less concavity at the femoral head-neck junction than do normal hips. This test may be of value in patients with loss of internal rotation for which a cause is not found


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1031 - 1036
1 Aug 2009
Dandachli W Islam SU Liu M Richards R Hall-Craggs M Witt J

This study examined the relationship between the cross-over sign and the true three-dimensional anatomical version of the acetabulum. We also investigated whether in true retroversion there is excessive femoral head cover anteriorly. Radiographs of 64 hips in patients being investigated for symptoms of femoro-acetabular impingement were analysed and the presence of a cross-over sign was documented. CT scans of the same hips were analysed to determine anatomical version and femoral head cover in relation to the anterior pelvic plane after correcting for pelvic tilt. The sensitivity and specificity of the cross-over sign were 92% and 55%, respectively for identifying true acetabular retroversion. There was no significant difference in total cover between normal and retroverted cases. Anterior and posterior cover were, however, significantly different (p < 0.001 and 0.002). The cross-over sign was found to be sensitive but not specific. The results for femoral head cover suggest that retroversion is characterised by posterior deficiency but increased cover anteriorly


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1010 - 1015
1 Aug 2020
Robinson PG Maempel JF Murray IR Rankin CS Hamilton DF Gaston P

Aims

Responsiveness and ceiling effects are key properties of an outcome score. No such data have been reported for the original English version of the International Hip Outcome Tool 12 (iHOT-12) at a follow-up of more than four months. The aim of this study was to identify the responsiveness and ceiling effects of the English version iHOT-12 in a series of patients undergoing hip arthroscopy for intra-articular hip pathology at a minimum of one year postoperatively.

Methods

A total of 171 consecutive patients undergoing hip arthroscopy with a diagnosis of femoroacetabular impingement (FAI) under the care of a single surgeon between January 2013 and March 2017 were included. iHOT-12 and EuroQol 5D-5L (EQ-5D-5L) scores were available pre- and postoperatively. Effect size and ceiling effects for the iHOT-12 were calculated with subgroup analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 466 - 470
1 Apr 2012
Malviya A Stafford GH Villar RN

The benefit of arthroscopy of the hip in the treatment of femoroacetabular impingement (FAI) in terms of quality of life (QoL) has not been reported. We prospectively collected data on 612 patients (257 women (42%) and 355 men (58%)) with a mean age at the time of surgery of 36.7 years (14 to 75) who underwent arthroscopy of the hip for FAI under the care of a single surgeon. The minimum follow-up was one year (mean 3.2 years (1 to 7)). The responses to the modified Harris hip score were translated using the Rosser Index Matrix in order to provide a QoL score. The mean QoL score increased from 0.946 (-1.486 to 0.995) to 0.974 (0.7 to 1) at one year after surgery (p < 0.001). The mean QoL score in men was significantly higher than in women, both before and one year after surgery (both p < 0.001). However, the mean change in the QoL score was not statistically different between men and women (0.02 (-0.21 to 0.27) and 0.04 (-0.16 to 0.87), respectively; p = 0.12). Linear regression analysis revealed that the significant predictors of a change in QoL score were pre-operative QoL score (p < 0.001) and gender (p = 0.04). The lower the pre-operative score, the higher the gain in QoL post-operatively (ρ = -0.66; p < 0.001). One year after surgery the QoL scores in the 612 patients had improved in 469 (76.6%), remained unchanged in 88 (14.4%) and had deteriorated in 55 (9.0%).


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 77 - 77
19 Aug 2024
Fu H Singh G H C Lam J Yan CH Cheung A Chan PK Chiu KY
Full Access

Hip precautions following total hip arthroplasty (THA) limits flexion, adduction and internal rotation, yet these precautions cause unnecessary psychological stress. This study aims to assess bony and implant impingement using virtual models from actual patient's bony morphology and spinopelvic parameters to deduce whether hip precautions are necessary with precise implant positioning in the Asian population. Individualized sitting and standing sacral slope data of robotic THAs performed at two tertiary referral centers in Hong Kong was inputted into the simulation system based on patients’ pre-operative sitting and standing lumbar spine X-rays. Three-dimensional dynamic models were reconstructed using the Stryker Mako THA 4.0 software to assess bony and implant impingement both anteriorly and posteriorly, with default cup placement at 40° inclination and 20° anteversion. Femoral anteversion followed individual patient's native version. A 36mm hip ball was chosen for all cups equal or above 48mm and 32mm for those below. Anterior impingement was assessed by hip flexion and posterior impingement was assessed by hip extension. 113 patients were included. At neutral rotation and adduction, no patients had anterior implant impingement at hip flexion of 100°. 1.7% had impingement at 110°, 3.5% had impingement at 120°, 9.7% had impingement at 130°. With 20° of internal rotation and adduction, 0.8% had anterior implant impingement at hip flexion of 90°, 7.1% had impingement at 100° and 18.5% had impingement at 110°. With the hip externally rotated by 20°, 0.8% of patients had posterior implant impingement, and 8.8% bony impingement at 0° extension. With enabling technology allowing accurate component positioning, hip precautions without limiting forward flexion in neutral position is safe given precise implant positioning and adequate osteophyte removal. Patients should only be cautioned about combined internal rotation, adduction with flexion


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims. The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy. Methods. We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores. Results. Of the 58 patients (62 hips), two (two hips) presented with dislocation or reoperation, and Kaplan-Meier analysis indicated a five-year survival rate of 96.7% (95% CI 92.4 to 100). Mean stem anteversion was 35.2° (SD 18.2°) for the Taperloc stem and 29.8° (SD 7.9°) for the Wagner Cone stem; mean reduction from Taperloc to Wagner Cone was 5.4° (SD 18.8°). Overall, 55 hips (52 patients) were simulated, and the prevalence of prosthetic impingement was lower for the Wagner Cone (5.5%, 3/55) compared with the Taperloc (20.0%, 11/55) stem, with an odds ratio of 0.20 (p = 0.038). Among the 33 respondents to the postal survey (36 hips), the mean scores were VAS pain 10.9, VAS satisfaction 86.9, and OHS 44.7. A multivariable analysis revealed that reduction of stem anteversion from Taperloc to Wagner Cone was more favourable for VAS pain (p = 0.029) and VAS satisfaction (p = 0.002). Conclusion. The mid-term survival rate for THA using the Wagner Cone stem was high, which may be supported by a reduction in prosthetic impingement. The reduction in excessive stem anteversion by using a tapered cone stem was associated with reduced pain and increased patient satisfaction. Cite this article: Bone Jt Open 2024;5(10):858–867


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 15 - 15
2 May 2024
Williams S Smeeton M Isaac G Anderson J Wilcox R Board T Williams S
Full Access

Dual Mobility (DM) Total Hip Replacements (THRs), are becoming widely used but function in-vivo is not fully understood. The aim of this study was to compare the incidence of impingement of a modular dual mobility with that of a standard cup. A geometrical model of one subject's bony anatomy \[1\] was developed, a THR was implanted with the cup at a range of inclination and anteversion positions (Corail® stem, Pinnacle® cup (DePuy Synthes)). Two DM variants and one STD acetabular cup were modelled. Joint motions were taken from kinematic data of activities of daily living associated with dislocation \[2\] and walking. The occurrence of impingement was assessed for each component combination, orientation and activity. Implant-implant impingement can occur between the femoral neck and the metal or PE liner (DM or STD constructs respectively) or neck-PE mobile liner (DM only). The results comprise a colour coded matrix which sums the number of impingement events for each cup position and activity and for each implant variant. Neck-PE mobile liner impingement, occurred for both DM sizes, for all activities, and most cup placement positions indicating that the PE mobile liner is likely to move at the start of all activities including walking. For all constructs no placement positions avoided neck-metal (DM) or neck-PE liner (STD) impingementevents in all activities. The least number of events occurred at higher inclination and anteversion component positions. In addition to implant-implant impingement, some instances of bone-bone and implant-bone impingement were also observed. Consistent with DM philosophy, neck-PE mobile liner impingement and liner motion occurred for all activities including walking. Neck-liner impingement frequency was comparable between both DM sizes (metal liner) and a standard cup (PE liner)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 8 - 8
23 Jun 2023
Baujard A Martinot P Demondion X Dartus J Girard J Migaud H
Full Access

Mechanical irritation or impingement of the iliopsoas tendon accounts for 2–6% of persistent postoperative pain cases after total hip arthroplasty (THA). The most common trigger is anterior cup overhang. CT-scan can be used to identify and measure this overhang; however, no threshold exists for symptomatic anterior iliopsoas impingement. We conducted a case–control study in which CT-scan was used to define a threshold that differentiates patients with iliopsoas impingement from asymptomatic patients after THA. We analyzed the CT-scans of 622 patients (758 CT-scans) between 2011 and 2020. Out of this population we identified 136 patients with symptoms suggestive of iliopsoas impingement. Among them, 6 were subsequently excluded: three because the diagnosis was reestablished intra-operatively (one metallosis, two anterior instability related to posterior prosthetic impingement) and three because they had another obvious cause of impingement (one protruding screw, one protruding cement plug, one stem collar), leaving 130 patients in the study (impingement) group. They were matched to a control group of 138 patients who were asymptomatic after THA. The anterior cup overhang (anterior margin of cup not covered by anterior wall) was measured by an observer (without knowledge of the clinical status) on an axial CT slice based on anatomical landmarks (orthogonal to pelvic axis). The impingement group had a median overhang of 8 mm [IQR: 5 to 11] versus 0 mm [IQR: 0 to 4] for the control group (p<.001). Using ROC curves, an overhang threshold of 4 mm was best correlated with a diagnosis of impingement (sensitivity 79%, specificity 85%, PPV = 75%, NPV = 85%). Pain after THA related to iliopsoas impingement can be reasonably linked to acetabular overhang if it exceeds 4 mm on a CT scan. Below this threshold, it seems logical to look for another cause of iliopsoas irritation or another reason for the pain after THA before concluding impingement is present


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 21 - 21
2 May 2024
Palit A Kiraci E Seemala V Gupta V Williams M King R
Full Access

Ideally the hip arthroplasty should not be subject to bony or prosthetic impingement, in order to minimise complications and optimise outcomes. Modern 3d planning permits pre-operative simulation of the movements of the planned hip arthroplasty to check for such impingement. For this to be meaningful, however, it is necessary to know the range of movement (ROM) that should be simulated. Arbitrary “normal” values for hip ROM are of limited value in such simulations: it is well known that hip ROM is individualised for each patient. We have therefore developed a method to determine this individualised ROM using CT scans. CT scans were performed on 14 cadaveric hips, and the images were segmented to create 3d virtual models. Using Matlab software, each virtual hip was moved in all potential directions to the point of bony impingement, thus defining an individualised impingement-free 3d ROM envelope. This was then compared with the actual ROM as directly measured from each cadaver using a high-resolution motion capture system. For each hip, the ROM envelope free of bony impingement could be described from the CT and represented as a 3d shape. As expected, the directly measured ROM from the cadaver study for each hip was smaller than the CT-based prediction, owing to the presence of constraining soft tissues. However, for movements associated with hip dislocation (such as flexion with internal rotation), the cadaver measurements matched the CT prediction, to within 10°. It is possible to determine an individual's range of clinically important hip movements from a CT scan. This method could therefore be used to create truly personalised movement simulation as part of pre-operative 3d surgical planning