Total ankle replacement (TAR) is the main surgical option in case of severe joint osteoarthritis. The high failure rate of current TAR is often associated to inappropriate prosthetic articulating surfaces designed according to old biomechanical concepts such the fixed axis of rotation, thus resulting in non-physiological joint motion. A recent image-based 3D morphological study of the normal ankle (Siegler et al. 2014) has demonstrated that the ankle joint surfaces can be approximated by a saddle-shaped cone with its apex located laterally (SSCL). We aimed at comparing the kinematic effects of this original solution both with the intact joint and with the traditional prosthetic articulating surfaces via in-silico models and
Introduction. The National Joint Registry has recently identified failure of large head metal on metal hip replacements. This failure is associated with the high torque at the interface of standard modular taper junction leading to fretting and corrosion. A number of manufacturers produce mini spigots, which in theory, provide a greater range of motion as the neck head junction is reduced. However, the relative torque to interface ratio at this junction is also increased. In this study we investigated hypothesis that the use of small spigots (minispigots) will increase wear and corrosion on modular tapers. Methods. Wear and corrosion of spigots were compared
The heat produced by drills, saws and PMMA cement in the handling of bone can cause thermal necrosis. Thermal necrosis could be a factor in the formation of a fibrous tissue membrane and impaired bony ingrowth into porous prostheses. This has been proposed to lead to non-union of osteotomies and fractures, the failure of the bone-cement interface and the failure of resurfacing arthroplasty. We compared three proprietary blades (the De Soutter, the Stryker Dual Cut and the Stryker Precision) in an
Tribology and wear of articular cartilage is associated with the mechanical properties, which are governed by the extracellular matrix (ECM). The ECM adapts to resist the loads and motions applied to the tissue. Most investigations take cartilage samples from quadrupeds, where the loading and motions are different to human. However, very few studies have investigated the differences between human and animal femoral head geometry and the mechanical properties of cartilage. This study assessed the differences between human, porcine, ovine and bovine cartilage from the femoral head; in terms of anatomical geometry, thickness, equilibrium elastic modulus and permeability. Diameter of porcine (3-6 months old), bovine (18-24 months old), ovine (4 years old) and human femoral heads were measured (n=6). Plugs taken out of the superior region of each femoral head and creep indentation was performed. The human femoral heads were obtained from surgery due to femoral neck fracture. Cartilage thickness was measured by monitoring the resistive force change as a needle traversed the cartilage and bone at a constant feed rate using a mechanical testing machine. The percentage deformation over time was determined by dividing deformation by thickness. A biphasic finite element model was used to obtain the intrinsic material properties of each plug. Data is presented as the mean ± 95% confidence limits. One-way ANOVA was used to test for significant differences (p < or = 0.05). Significant differences in average femoral head diameter were observed between all animals, where bovine showed the largest femoral head. Human cartilage was found to be significantly thicker than cartilage from all quadrupedal hips. Human cartilage had a significantly larger equilibrium elastic modulus compared to porcine and bovine cartilage. Porcine articular cartilage was measured to be the most permeable which was significantly larger than all the other species. No significant difference in permeability was observed between human and the other two animals: bovine and ovine (Table 1). The current study has shown that articular cartilage mechanical properties, thickness and geometry of the femoral heads differ significantly between different species. Therefore, it is necessary to consider these variations when choosing animal tissue to represent human.
The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery.
Abstract. Objectives. The enthesis is a specialised structure at the interface between bone and tendon with gradual integration to maintain functionality and integrity. In the process of fabricating an
Production of porous titanium bone implants is a highly promising research and application area due to providing high osseointegration and achieving the desired mechanical properties. Production of controlled porosity in titanium implants is possible with laser powder bed fusion (L- PBF) technology. The main topics of this presentation includes the L-PBF process parameter optimization to manufacture thin walls of porous titanium structures with almost full density and good mechanical properties as well as good dimensional accuracy. Moreover, the cleaning and coating process of these structures to further increase osseointegration and then
Abstract. OBJECTIVES. Dual mobility (DM) total hip replacements (THRs) were introduced to reduce the risk of hip dislocation in at-risk patients. DM THRs have shown good overall survivorship and low rates of dislocation, however, the mechanisms which describe how these bearings function in-vivo are not fully understood. This is partly due to a lack of suitable characterisation methodologies which are appropriate for the novel geometry and function of DM polyethylene liners, whereby both surfaces are subject to articulation. This study aimed to develop a novel semi-quantitative geometric characterisation methodology to assess the wear/deformation of DM liners. METHODS. Three-dimensional coordinate data of the internal and external surfaces of 14
Introduction and Objective. Total joint replacement is indicated for osteoarthritis where conservative treatment has failed, and in the UK the number of patients requiring hip and knee replacements is set to increase with an ageing population. Survival of total hip replacements is around 85% at 20 years with the most common reason for revision being aseptic loosening of the implant secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can also cause pseudotumour formation. As revision surgery is associated with higher morbidity, mortality, infection rates, venous thromboembolism, resource demand and poorer subsequent function it is important to understand the mechanisms underlying the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4), an innate immune receptor, has been demonstrated to mediate deleterious immune responses by the Tyson-Capper research group, including inflammatory cytokine interleukin-8 (IL-8) secretion. Statin use in epidemiological studies has been associated with reduced overall risk of revision surgery after hip replacement.
To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in
Osteosynthesis aims to maintain fracture reduction until bone healing occurs, which is not achieved in case of mechanical fixation failure. One form of failure is plastic plate bending due to overloading, occurring in up to 17% of midshaft fracture cases and often necessitating reoperation. This study aimed to replicate in-vivo conditions in a cadaveric experiment and to validate a finite element (FE) simulation to predict plastic plate bending. Six cadaveric bones were used to replicate an established ovine tibial osteotomy model with locking plates
Entheses are the anchorage sites of tendons to bones in the musculoskeletal system. They have a unique microanatomy that allow smooth transfer of mechanical load through tendon to bone. However, entheses are prone to injury due to their small surface area. 1,2. The overall success rate of the current gold standard treatment (directly attaching the tendon to bone) is small. 3,4. Consequently, the aim of this study was to evaluate different hydrogels and their suitability for developing an
Worldwide, osteoporosis, causes more than 8.9 million fractures annually, resulting in an osteoporotic fracture every 3 seconds, where 1 in every 3 women and 1 in every 5 men aged over 50 will experience osteoporotic fractures at least once in their lifetime. Vertebral fractures, estimated at 1.4 million/year are among the most common fractures, posing enormous health and socioeconomic challenges to the individual and society at large. Considering that the great majority of individuals at high risk (up to 80%), who have already had at least one osteoporotic fracture, are neither identified nor treated, prediction of the risk factors for vertebral fractures can be of great value for prevention/early diagnosis. Recent studies show that finite element analysis of computed tomography (CT) scans provides noninvasive means to assess fracture risk and has the potential to be clinically implemented upon proper validation. The objective of this study was to develop a voxel-based finite element model using quantitative computed tomography (QCT) images in conjunction with
Low back pain (LBP) is the leading cause of disability worldwide, interfering with an individual's quality of life and work performance. Understanding the degeneration mechanism of the intervertebral disc (IVD), one of the key triggers of LBP, is hence of great interest. Disc degeneration can be mimicked in animal studies using the injection of enzymatic digestion, needle puncture, stab injury, or mechanical over-loading [1]. However, the detailed response of the artificial degenerated disc using needle puncture under physiological dynamic loading in diurnal activities has not yet been analyzed using FE-models. To fill the gap in literature, this study investigates the role of needle puncture injury on the biomechanical response of IVD using a combination of Finite Element (FE) simulations and
Abstract. Introduction. Altered mechanical loading is a contributing factor to low back pain, a condition affecting 80% of the population at some point in life. A plethora of
Background.
Introduction. Ischaemic preconditioning (IPC) is a phenomenon whereby a tissue is more tolerant to an insult if it is first subjected to short bursts of sublethal ischaemia and reperfusion. The potential of this powerful mechanism has been realised in many branches of medicine where there is an abundance of ongoing research. However, there has been a notable lack of development of the concept in Orthopaedic surgery. The routine use of tourniquet-controlled limb surgery and traumatic soft tissue damage are just two examples of where IPC could be utilised to beneficial effect in Orthopaedic surgery. Methods. We conducted a randomized controlled clinical trial looking at the role of a delayed remote IPC stimulus on a cohort of patients undergoing a total knee arthroplasty (TKA). We measured the effect of IPC by analysing gene expression in skeletal muscle samples from these patients. Specifically we looked at the expression of Heat shock protein-90 (HSP-90), Catalase and Cyclo-oxygenase-2 (COX-2) at the start of surgery and at one hour into surgery. Gene analysis was performed using real time polymerase chain reaction amplification. As a second arm to the project we developed an
Demographics changes and the increasing incidence of metastatic bone disease are driving the significant issues of vertebral body (VB) fractures as an important consideration in the quality of life of the elderly. Whilst osteoporotic vertebral fractures have been widely studies both clinically and biomechanically, those fractures arising from metastatic infiltration in the spine are relatively poorly understood. Biomechanical
By combining cells, biological factors, and biomaterials the field of tissue engineering has generated technologies capable of supporting regeneration. However, the regulatory hurdles associated with the use of cell-based therapies often hinder translation. Consequently, to meet the growing demand for regenerative technologies new approaches are needed. Emerging evidence suggests that cell-derived extracellular vesicles (EVs) are critical in cell-cell communication and regulation of bone formation. This talk will explore the role of osteoblast EVs in directing stem-cell differentiation