Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 270 - 271
1 Jul 2011
Zywiel MG Ulrich SD Suda AD Duncan JL McGrath MS Mont MA
Full Access

Purpose: Many strategies have been reported for decreasing the cost of orthopaedic procedures, including negotiating lower prices with manufacturers and using lower-cost generic implants, but prosthetic waste has not been investigated. The purpose of this study was to characterize the present and potential future cost of intra-operative waste of hip and knee implants.

Method: A regional prospective assessment of implant waste was performed from January 2007 to June 2008, evaluating the incidence and reasons for component waste, the cost of the wasted implants, and where the cost was absorbed (hospital or manufacturer). Using published data on nationwide arthroplasty volumes, the results were extrapolated to the whole of the United States. Finally, based on peer-reviewed estimates of nationwide arthroplasty volumes for the next 20 years, a projection was made about the future cost burden of implant waste.

Results: Implant waste occurred in 79 of 3443 recorded procedures (2%), with the surgeon bearing primary responsibility in 73% of occurrences. The annualized waste cost was $109,295.35, with 67% absorbed by the hospital. When extrapolated to the whole of the United States, the annual cost to hospitals of hip and knee prosthetic waste is $36,019,000, and is estimated to rise to $112,033,000 in current dollars by the year 2030.

Conclusion: This study discovered a notable incidence of intra-operative hip and knee implant waste, with the majority of cases attributed to the surgeon, and representing an important additional cost burden on hospitals. With arthroplasty rates projected to increase markedly over the next twenty years, this waste represents a potentially noteworthy target for educational programs and other cost containment measures in orthopaedic surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 158 - 165
1 Feb 2024
Nasser AAHH Sidhu M Prakash R Mahmood A

Aims

Periprosthetic fractures (PPFs) around the knee are challenging injuries. This study aims to describe the characteristics of knee PPFs and the impact of patient demographics, fracture types, and management modalities on in-hospital mortality.

Methods

Using a multicentre study design, independent of registry data, we included adult patients sustaining a PPF around a knee arthroplasty between 1 January 2010 and 31 December 2019. Univariate, then multivariable, logistic regression analyses were performed to study the impact of patient, fracture, and treatment on mortality.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.

Cite this article: Bone Joint J 2022;104-B(12):1292–1303.


Bone & Joint 360
Vol. 12, Issue 3 | Pages 13 - 15
1 Jun 2023

The June 2023 Hip & Pelvis Roundup360 looks at: Machine learning to identify surgical candidates for hip and knee arthroplasty: a viable option?; Poor outcome after debridement and implant retention; Can you cement polyethylene liners into well-fixed acetabular shells in hip revision?; Revision stem in primary arthroplasties: the Exeter 44/0 125 mm stem; Depression and anxiety: could they be linked to infection?; Does where you live affect your outcomes after hip and knee arthroplasties?; Racial disparities in outcomes after total hip arthroplasty and total knee arthroplasty are substantially mediated by socioeconomic disadvantage both in black and white patients.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 95 - 95
1 Jun 2018
Walter W
Full Access

INTRODUCTION. Medial ball and socket knee designs have a long history but are not yet widely used. The Saiph medial ball and socket knee passed preclinical testing before an introductory cohort of 20 patients were studied in detail for 2 years. Subsequently a multicenter study was undertaken by the developing surgeons. METHODS. We report the minimum 5-year follow-up of the first 102 Saiph knee replacements implanted in Australia as part of a step-wise or phased introduction of this device to the market. These 102 consecutive patients were recruited to the study at two centers in Australia. Revisions, complications and adverse events were collected. Patient reported scores including EQ-5D, Oxford Knee Score (OKS), Knee Injury and Osteoarthritis Outcome Score (KOOS) and Kujala and range of motion satisfaction and forgotten joint score were collected. Data were collected pre-operatively and at one to two years post-operatively and at a minimum of five years. RESULTS. The average age of the patients was 67.2 years (range, 47 to 85) and average BMI was 29. There were 53% female and 47% male patients. There were two revisions performed – one for infection and one for arthrofibrosis. There were no device related failures or adverse events reported. The OKS improved from 21 pre-operatively to 43 post-operatively. KOOS improvement pre-operative to post-operative was 51 to 88 (symptoms), 54 to 94 (pain), 14 to 68 (sport) and 23 to 86 (quality of life). The percentage of patients reporting difficulty negotiating stairs because of their knee decreased from 86% pre-operatively to 5% post-operatively. The percentage of patients reporting a moderate or severe lack of confidence with their knee decreased from 91% pre-operatively to 10% post-operatively. CONCLUSION. This study demonstrates that this knee replacement design is safe and provides early pain relief and improved function. Patient reported outcome scores which improved post-operatively and were maintained at latest follow-up. Further data is being collected as part of a large, multicenter study to show repeatability in non-designer surgeon hands


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 59 - 59
1 Mar 2017
van Arkel R Ghouse S Ray S Nai K Jeffers J
Full Access

Implant loosening is one of the primary mechanisms of failure for hip, knee, ankle and shoulder arthroplasty. Many established implant fixation surfaces exist to achieve implant stability and fixation. More recently, additive manufacturing technology has offered exciting new possibilities for implant design such as large, open, porous structures that could encourage bony ingrowth into the implant and improve long-term implant fixation. Indeed, many implant manufacturers are exploiting this technology for their latest hip or knee arthroplasty implants. The purpose of this research is to investigate if the design freedoms offered by additive manufacturing could also be used to improve initial implant stability – a precursor to successful long-term fixation. This would enable fixation equivalent to current technology, but with lower profile fixation features, thus being less invasive, bone conserving and easier to revise. 250 cylindrical specimens with different fixation features were built in Ti6Al4V alloy using a Renishaw AM250 additive manufacturing machine, along with 14 specimens with a surface roughness similar to a conventional titanium fixation surface. Pegs were then pushed into interference fit holes in a synthetic bone material using a dual-axis materials testing machine equipped with a load/torque-cell (figure 1). Specimens were then either pulled-out of the bone, or rotated about their cylindrical axis before being pulled out to quantify their ability to influence initial implant stability. It was found that additively manufactured fixation features could favourably influence push-in/pull-out stability in one of two-ways: firstly the fixation features could be used to increase the amount pull-out force required to remove the peg from the bone. It was found that the optimum fixation feature for maximising pull-out load required a pull-out load of 320 N which was 6× greater than the least optimum design (54 N) and nearly 3× the maximum achieved with the conventional surface (120 N). Secondly, fixation features could also be used to decrease the amount of force required to insert the implant into bone whilst improving fixation (figure 2). Indeed, for some designs the ratio of push-in to pull-out was as high as 2.5, which is a dramatic improvement on current fixation surface technology, which typically achieved a ratio between 0.3–0.6 depending on the level of interference fit. It was also found that the additively manufactured fixation features could influence the level of rotational stability with the optimum design resisting 3× more rotational torque compared to the least optimum design. It is concluded that additive manufacturing technology could be used to improve initial implant stability either by increasing the anchoring force in bone, or by reducing the force required to insert an implant whilst maintaining a fixed level of fixation. This defines a new set of rules for implant fixation using smaller low profile features, which are required for minimally invasive device design


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 104 - 104
1 Apr 2017
Haddad F
Full Access

Total knee arthroplasty (TKA) is widely accepted as a successful treatment option for the pain and limitation of function associated with severe joint disease. The ideal knee arthroplasty implant should provide reliable pain relief and normal levels of functional strength and range of motion. However, there are still a number of implant-specific problems following knee arthroplasty, such as irregular kinematics, polyethylene wear and poor range of motion. MRI and cadaveric studies have highlighted important kinematics during movement of the native knee. In particular, flexion of the joint results in a phenomenon referred to as “roll back and slide”. This essentially describes posterior translation of the femur on the tibia which in turn has a two-fold biomechanical function: to increase the lever arm of the quadriceps and allow clearance of the femur from the tibia in deep flexion. During extension of the joint, the femur rolls forward increasing the lever arm of the hamstrings to act as a brake on hyperextension. Additional rotation of the joint arises in the axial plane. This is attributed to the concave tibial plateau and relatively fixed meniscus on the medial compartment of the joint in comparison to a lateral convex plateau with a mobile meniscus. This asymmetry allows axial rotation of the lateral compartment over the medial compartment by up to 30 degrees. Subsequently, from extension to full flexion the tibia rotates internally on the femur and vice versa. The external rotation of the tibia on the femur that occurs during the terminal degrees of knee extension is often referred to as the “screw home mechanism” and results in tightening of both the cruciate ligaments locking the knee such that the tibia is in a position of maximum stability on the femur. Numerous studies over the past two decades have characterised the in-vivo motions of knee replacements. Major conclusions from these studies are that the motion after knee arthroplasty generally does not replicate normal knee motions. In particular, many kinematic studies of unconstrained devices have demonstrated the femur sliding forwards rather than backwards with flexion. This paradoxical movement is also seen in many posterior cruciate retaining knees. This in turn has a negative outcome in range of movement, particularly in light of fluoroscopic studies highlighting strong positive correlations in weight-bearing flexion with femoral roll back. In contrast knee arthroplasties that retain both cruciate ligaments come closest to replicating normal knee motion and furthermore, provide greater stair climbing stability. It may therefore be presumed that this excessive AP motion in a well-designed prosthesis is attributed to a loss in the natural intrinsic stabilizing structures. A number of studies to date have also highlighted close correlation between knee kinematics and functional strength. Generally, patients with knee replacement exhibit a significant loss of strength compared to normal. The common experimental findings is that knees with the highest intrinsic stability, whether provided by retained ligaments, conforming articular surfaces or post-cam substitution, exhibit the greatest functional strength in high-demand activities in TKA patients. On the basis of this knowledge, it would be intuitive to choose a TKA design that attempts to restore natural knee joint stability. The medially conforming ‘ball and socket’ articulation of the medial tibio-femoral compartment is a design concept thought to provide stability through the complete arc of knee flexion. Clinical and biomechanical data from a number of centers suggests that this has been a successful evolution in TKA that will continue to benefit patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 9 - 9
1 May 2016
Adravanti P Guggi T D'Anchise R Dwyer K Lesko J Kape J
Full Access

INTRODUCTION. There is ongoing debate about the possible advantages of unicompartmental (UNI) knee replacement versus total knee replacement (TKR), such as for young, active patients. The purpose of this study was to investigate functional, radiographic, and device survivorship outcomes of UNI knee replacement with a newer generation UNI through 2-years post-op. METHODS. A retrospective review of 188 cemented, fixed bearing unicompartmental (UNI) knee replacements implanted between January 2009 and June 2012 at 3 centers. The purpose of this study was to evaluate the survivorship, reasons for revision, radiographic and clinical results. A chart review was performed to collect demographics, operative details, American Knee Society (AKS) scores and adverse events (AE) through 2-years post-op. Kaplan-Meier (KM) device survivorship rates for the partial knee construct were estimated for post-op years in which at least 40 subjects had later follow-up. The definition of revision was the removal of any component for any reason, and device survivorship was the lack of revision. The time variable was the time to revision if the knee had been revised, or the time to last clinical follow-up or death if the knee had not been revised. The average follow-up was 2.03 years (SD=0.4). The mean age was 64 years (SD=10.5), 56% of the patients were 65 years or younger, mean BMI was 27.5 kg/m2 (SD=4.9), 60% of patients were women, and 89% had a diagnosis of OA (9.6% had AVN). Data were collected through April 2015. RESULTS. The KM device survivorship was 98.7% at 2 years (95% CI: 94.8–99.7%) (Figure 1). There were 3 revisions, 2 of which were prior to 2 years post-op (Figure 2) Overall, there were 23 operative site adverse events, including the 3 revisions. The most common AE was arthralgia (4.3%). There were no observations of lucencies, osteolysis, stress shielding, or femoral notching. At 2-years post-op the average AKS score was 89.9 points (N= 138, SD=11); 84% were in the good to excellent range. The average improvement from pre-op baseline at 2-years was 37.4 (N=117, SD=18). The average improvement in pain was 30 points (N=124, SD=15) on a 0–50 point scale, with 70% having no pain and 20% having mild pain at 2-years. Preoperatively, the average flexion was 118 degrees (N=152, SD=12.7o), which improved to 126 degrees (N=148, SD=9.4 o) at 2-years; average change from pre-op was 7.1 degrees (N=136, SD=12.2 o). Preoperatively, the average extension was 1.9 degrees (N=152, SD=3.6 o) which improved to 0.5 degrees (N=148, SD=1.6 o) at 2-years; average change from pre-op was a 1.4 degree improvement (N=136, SD=3.6 o). DISCUSSION. Overall results demonstrated excellent 2 year survivorship for this newer generation UNI, consistent with published national registry results for the class of UNIs. The clinical results demonstrated excellent pain relief and improvements in motion compared to preoperative. It will be of interest to investigate longer term outcomes of UNI knee replacement in a larger patient population, with a focus on younger, more active patients (younger than 60), perhaps with an emphasis on the quality of life


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_25 | Pages 4 - 4
1 May 2013
Johnson S Wang W Hadden W
Full Access

Two knee arthroplasty implants with very different design principles were previously available in our region. Kinemax is PCL retaining with a fixed bearing and cemented components. LCS is PCL sacrificing, fully uncemented and incorporates a rotating bearing. The aim of this study was to compare the outcome of these two radically different knee designs. Between 1994 and 2004, 300 consecutive patients were recruited and underwent a knee replacement performed by the senior author. Each patient was randomised via sealed envelopes to receive either LCS or Kinemax implants. All patients were followed up by an audit nurse and patient satisfaction and Knee Society Scores (KSSs) were recorded. By 2012, 135 patients had complete data at a minimum of 10-years of follow-up. The remaining 165 had either died before 10-year review or had not reached the 10-year mark. No patient was lost to follow-up. There were 69 patients in the Kinemax group and 68 in the LCS group. The pre-operative demographics were not significantly different between the two groups. At 10-years of follow-up, each implant design demonstrated significant improvements in the KSS (p=0.001 kinemax, p=0.001 LCS) over pre-operative values. No significant difference could be identified between the two designs at 10 years. There were only two revisions in the whole study population and both were for kinemax implants at less than five years post-operatively. In conclusion, there was no statistically significant difference in outcome between the two radically different knee designs at ten years with both designs performing equally well


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims

Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA).

Methods

Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 376 - 376
1 Jul 2011
Johnston A Hanlon M Blyth P Kejriwal R
Full Access

Correct sizing of knee arthroplasty implants avoids problems such as stiffness from too large an implant, or periprosthetic fractures from undersizing. Currently most implants are based on a generic unisex population. Femoral component sizing is therefore based solely on the AP measurement after the distal femoral cut. In order to investigate the differences between the New Zealand population and other populations with reported anthropometrics we studied the anthropometrics of the male and female distal femur. The distal femur of 26 cadaveric knees was resected using standard cutting guides. Using a sizing guide the AP dimension was measured from the posterior condyle to the anterior cortex just proximal to the trochlea (posterior referencing). The ML dimension was measured at the cut surface in the coronal plane of the epicondylar axis. Overall AP measurement had a mean(standard deviation) of 62(±6.7) mm, the ML measurements had a mean (sd.) of 72(±6.6)mm yielding an ML/AP(100) ratio of 117(±11). The male AP mean was 67(±4.5) mm and female AP 57 (±4.4)mm. The male ML was 77 (±4.7)mm and female ML 68 (±4.5)mm. The ML/AP ratio for male was 111(±12) and female was 120 (±10). This pilot study has shown differences between genders in the NZ population even with this small sample size. As this data is important for designers of total knee implants, planning is currently underway to perform measurements intraoperatively from approximately 400 patients undergoing total knee replacement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 37 - 37
1 Jan 2016
Banks S
Full Access

The history of knee mechanics studies and the evolution of knee arthroplasty design have been well reported through the last decade (e.g. [1],[2]). Through the early 2000's, there was near consensus on the dominant motions occurring in the healthy knee among much of the biomechanics and orthopaedic communities. However, the past decade has seen the application of improved measurement techniques to permit accurate measurement of natural knee motion during activities like walking and running. The results of these studies suggest healthy knee motion is more complex than previously thought, and therefore, design of suitable arthroplasty devices more difficult. The purpose of this paper is to briefly review the knee biomechanics literature before 2008, to present newer studies for walking and running, and to discuss the implications of these findings for the design of knee replacement implants that seek to replicate physiologic knee motions. Many surgeons point to Brantigan and Voshell [3], an anatomic study of over one hundred specimens focusing on the ligamentous and passive stabilizers of the knee, as being an important influence in their thinking about normal knee function. M.A.R. Freeman and colleagues in London claim particular influence from this work, which motivated their extensive series of MR-based knee studies reported in 2000 [4,5,6]. These papers, perhaps more than any others, are responsible for the common impression that knee kinematics are well and simply described as having a ‘medial pivot’ pattern, where the medial condyle remains stationary on the tibial plateau while the lateral condyle translates posteriorly with knee flexion. Indeed, subsequent studies in healthy and arthritic knees during squatting and kneeling [7,8,9] and healthy and ACL-deficient knees during deep knee bends [10,11] show patterns of motion quite similar to those reported by Freeman and coworkers. These studies make a convincing case for how the healthy knee moves during squatting, kneeling and lunging activities. However, these studies are essentially silent on knee motions during ambulatory activities like walking, running and stair-climbing; activities which most agree are critically important to a high-function lifestyle. In 2008 Koo and Andriacchi reported a motion laboratory study of walking in 46 young healthy individuals and found that the stance phase knee center of rotation was LATERAL in 100% of study participants [12]. One year later, Kozanek et al. published a bi-plane fluoroscopy study of healthy knees walking on a treadmill and corroborated the findings of Koo and Andriacchi, i.e. the center of rotation in healthy knees walking was lateral [13]. Isberg et al. published in 2011 a dynamic radiostereometric study of knee motions in healthy, ACL-deficient and ACL-reconstructed knees during a weight-bearing flexion-to-extension activity, and showed consistent anterior-to-posterior medial condylar translations with knee extension, accompanied by relatively little lateral condylar translation [14]. Hoshino and Tashman reported in 2012 another dynamic radiostereometric analysis of healthy knees during downhill running and concluded “While the location of the knee rotational axis may be dependent on the specific loading condition, during … walking and running … it is positioned primarily on the lateral side of the joint. ”[15] Finally, Claes et al. reported in late 2013 the detailed anatomy of the anterolateral ligament (ALL), another structure serving to stabilize the lateral knee compartment near extension, roughly in parallel with the anterior cruciate ligament (ACL) [16]. Studies since 2008 [9,12–16] show knee motions during walking, running and pivoting activities do not fit the “medial pivot” pattern of motion, but rather point to a “lateral pivot” pattern of knee motion consistent with the stabilizing roles of the ACL and ALL. Having a medial center of rotation in flexion and a lateral center of rotation in extension greatly complicates knee arthroplasty design if the goal is to reproduce kinematics approximating those observed in the natural knee. Consistent kinematics having a fixed center of rotation implies joint stabilizing structures or surfaces, not simply articular laxity allowing the knee to move as forces dictate. Thus, a total knee arthroplasty design seeking to reproduce physiologic motions may need to provide distinct means for controlling tibiofemoral motion in both extension and flexion. Recent studies of natural knee motions have made the implant designer's job more difficult!


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 419 - 420
1 Jul 2010
Malikian R Maruthainar K Skinner J Carrington R Maruthainar N Cannon S Briggs T Dowd G Blunn G
Full Access

Purpose: To determine if Cobalt-Chrome (CoCr) femoral components of knee replacement components roughen significantly, and when significant roughening may start. Methods:. Retrieval study:. 14 knee replacement components were retrieved after revision procedures. The average surface roughness (Ra) of the articulating regions of each condyle was measured by surface profilometry and compared to Ra of non-articulating regions, which acted as controls on each implant. In vitro testing:. Pin-on-plate testing of 6 paired CoCr pins and vacuum γ-irradiated UHMWPE discs was carried out under a force of 2.3kN at 1Hz to investigate how the articular Ra of CoCr pins varied with increasing number of cycles. Ra was measured at 0, 10, 100 and 1000 cycles using surface profilometry. Results:. Retrieval analysis:. Average medial femoral condyle Ra was significantly greater than control Ra (p=0.040). Average lateral femoral condyle Ra was not significantly greater than control Ra (p=0.158). Significantly higher average Ra was seen on the medial condyles when compared with the lateral condyles (p < 0.05). 8/14 retrieved femoral components had ≥1 significantly roughened condyle (p< 0.05). In vitro testing:. At 100 and 1000 cycles the Ra of the CoCr pins was significantly greater than Ra at 0 cycles (p< 0.05). Conclusion: A large proportion of femoral components of knee replacement implants roughen significantly in vivo, a finding supported by our in vitro testing which indicates that roughening may begin very early on. This may have important implications for aseptic loosening of knee replacement components. However, the average Ra of those CoCr surfaces significantly (p< 0.05) roughened was within acceptable limits for orthopaedic implants (0.050μm)


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 15 - 15
1 Mar 2010
Petrak MJ Rex E Bohm E
Full Access

Purpose: The accuracy and precision for shoulder radio-stereometric analysis (RSA) is not as well documented as for hip and knee replacement implants. Shoulder replacement glenoid component have a relatively high rate of aseptic loosening when compared to primary hip and knee replacement components. The purpose of this study is to validate our marker based RSA system for a shoulder phantom using computed radiography. Method: A Sawbones humerus was surgically prepared with a total shoulder implant by an experienced orthopaedic surgeon. A pegged glenoid component (3 pegs) previously marked with 7 tantalum beads was cemented into a Sawbones scapula. The glenoid component was mounted to a 32mm thick acrylic plate. The simulated humerus with implant was fixed to a linear translation stage. The stage was able to move in 0.010 mm increments with an accuracy of 0.002 mm. The Humeral component was then incrementally moved along the x, y, and z axis from 0 to 0.050, 0.100, 0.150, 0.200, 1.000 mm with duplicates taken at each increment. This examination was performed a total of 3 times. From these 9 RSA exams, the accuracy and precision of the UmRSA Digital Measure V6.0 RSA system was determined from 90 pairs of linear displacements. Results: The standard deviation of the total average error for the X, Y, Z axis were 0.023, 0.022, and 0.070 mm respectively. The accuracy for phantom shoulder model using computer radiography was 0.008 mm in the medial direction, 0.007 mm in the superior direction and 0.019 mm in the anterior direction. The corresponding precision measurements were 0.005, 0.005, 0.015 mm. Conclusion: This preliminary assessment of accuracy and precision of a shoulder phantom model illustrates that marker based RSA is a useful system to monitor the micro-motion of total shoulder designs


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 310 - 310
1 Nov 2002
Velkes S Livshitz M Jakim I
Full Access

Introduction: Polyethylene wear of the prosthetic knee tibial component is currently the main cause of medium and long term failure of total knee arthroplasty. The use of a mobile bearing knee prosthesis is intended to decrease the rate polyethylene wear and therefore delay medium and long term failure. We present our five year clinical results of a mobile bearing knee prosthesis. Material and methods: 150 mobile bearing knee arthroplasties implanted between 1993 and 1996 in our institution were followed. 15 knees were lost to follow up. All knees followed up were operated on for osteoarthritis. The British Orthopaedic Association knee function score was used to access the clinical results and the Knee Society Radiographic evaluation was used for radiological evaluation. Results: 33% of patients achieved an excellent result, 52% a good result, and only 3% were not satisfied with the end result. Flexion was greater than 90 degrees in 97% of the patients. Three knees required re-surgery, 1 for deep sepsis, 1 for patello femoral problems and 1 for a fractured polyethylene component. No knee required revision for polyethylene were or loosening. Conclusions: Our mid term results are comparable to those of other prosthesis both mobile and fixed bearing knees as far as revision and radiological and functional scores are concerned. We noted that patient satisfaction in the face of good radiological and functional scores is less than would be expected


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 98 - 104
1 Jan 2021
van Ooij B Sierevelt IN van der Vis HM Hoornenborg D Haverkamp D

Aims

For many designs of total knee arthroplasty (TKA) it remains unclear whether cemented or uncemented fixation provides optimal long-term survival. The main limitation in most studies is a retrospective or non-comparative study design. The same is true for comparative trials looking only at the survival rate as extensive sample sizes are needed to detect true differences in fixation and durability. Studies using radiostereometric analysis (RSA) techniques have shown to be highly predictive in detecting late occurring aseptic loosening at an early stage. To investigate the difference in predicted long-term survival between cemented, uncemented, and hybrid fixation of TKA, we performed a randomized controlled trial using RSA.

Methods

A total of 105 patients were randomized into three groups (cemented, uncemented, and hybrid fixation of the ACS Mobile Bearing (ACS MB) knee system, implantcast). RSA examinations were performed on the first day after surgery and at scheduled follow-up visits at three months, six months, one year, and two years postoperatively. Patient-reported outcome measures (PROMs) were obtained preoperatively and after two years follow-up. Patients and follow-up investigators were blinded for the result of randomization.


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 852 - 860
1 Jul 2020
Zamora T Garbuz DS Greidanus NV Masri BA

Aims

Our objective is to describe our early and mid-term results with the use of a new simple primary knee prosthesis as an articulating spacer in planned two-stage management for infected knee arthroplasty. As a second objective, we compared outcomes between the group with a retained first stage and those with a complete two-stage revision.

Methods

We included 47 patients (48 knees) with positive criteria for infection, with a minimum two-year follow-up, in which a two-stage approach with an articulating spacer with new implants was used. Patients with infection control, and a stable and functional knee were allowed to retain the initial first-stage components. Outcomes recorded included: infection control rate, reoperations, final range of motion (ROM), and quality of life assessment (QoL) including Western Ontario and McMaster Universities osteoarthritis index, Knee Injury and Osteoarthritis Outcome Score, Oxford Knee Score, 12-Item Short-Form Health Survey questionnaire, and University of California Los Angeles (UCLA) activity score and satisfaction score. These outcomes were evaluated and compared to additional cohorts of patients with retained first-stage interventions and those with a complete two-stage revision. Mean follow-up was 3.7 years (2.0 to 6.5).


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 48 - 54
1 Jul 2019
Kahlenberg CA Lyman S Joseph AD Chiu Y Padgett DE

Aims

The outcomes of total knee arthroplasty (TKA) depend on many factors. The impact of implant design on patient-reported outcomes is unknown. Our goal was to evaluate the patient-reported outcomes and satisfaction after primary TKA in patients with osteoarthritis undergoing primary TKA using five different brands of posterior-stabilized implant.

Patients and Methods

Using our institutional registry, we identified 4135 patients who underwent TKA using one of the five most common brands of implant. These included Biomet Vanguard (Zimmer Biomet, Warsaw, Indiana) in 211 patients, DePuy/Johnson & Johnson Sigma (DePuy Synthes, Raynham, Massachusetts) in 222, Exactech Optetrak Logic (Exactech, Gainesville, Florida) in 1508, Smith & Nephew Genesis II (Smith & Nephew, London, United Kingdom) in 1415, and Zimmer NexGen (Zimmer Biomet) in 779 patients. Patients were evaluated preoperatively using the Knee Injury and Osteoarthritis Outcome Score (KOOS), Lower Extremity Activity Scale (LEAS), and 12-Item Short-Form Health Survey questionnaire (SF-12). Demographics including age, body mass index, Charlson Comorbidity Index, American Society of Anethesiologists status, sex, and smoking status were collected. Postoperatively, two-year KOOS, LEAS, SF-12, and satisfaction scores were compared between groups.