We evaluated the accuracy with which a custom-made
acetabular component could be positioned at revision arthroplasty
of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent
revision surgery using a custom-made trabecular titanium implant.
There were four men and 12 women with a median age of 67 years (48
to 79). The planned inclination (INCL), anteversion (AV), rotation
and centre of rotation (COR) of the implant were compared with the post-operative
position using CT scans. A total of seven implants were malpositioned in one or more parameters:
one with respect to INCL, three with respect to AV, four with respect
to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which
CT data acquired for the pre-operative planning of a custom-made
revision acetabular implant have been compared with CT data on the
post-operative position. The results are encouraging. Cite this article:
Failure of union of the tibia with a
Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for
Aims. Calcaneal osteomyelitis remains a difficult condition to treat with high rates of recurrence and below-knee amputation, particularly in the presence of severe soft-tissue destruction. This study assesses the outcomes of single-stage orthoplastic surgical treatment of calcaneal osteomyelitis with
Purpose. The aim of this study was to compare the clinical outcomes of the revision TKA in which trabecular metal cones and femoral head allografts were used for
Aims. Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of
A seventy-one-years old, female, has been treated by hemodialysis from 1977 due to renal failure. In April 19, 1985, she had Charnley Low Friction Arthroplasty for right hip joint. She often felt mild pain on the joint from 2000. Radiograph showed central migration of the socket and huge cystic bone defect of the acetabulum surrounded by thin cortical bone like an egg-shell form. Tear drop (acetabular floor) was diminished due to massive bone destruction or severe osteolysis. CT showed that the diameter of the cavity was approximately 10 cm. In March 1, 2002, the socket was upside down and moving freely in the cavity. The patient could not weight-bear on right lower extremity but walk without two crutches. Hemiarthroplasty for her left hip joint (contra-lateral side) was done in June 26, 2006, due to femoral neck fracture. Because of continuous right hip joint pain and walking disturbance, she underwent revision surgery in May 20, 2008. At the surgery, the cavity was empty except for the socket and fibrous tissue. Impaction grafting by using morselized allograft including porous and solid hydroxyapatite granules (100 g and 40 g each) was done after the socket and the tissue were extracted. A custom made all polyethylene socket (73 × 68 mm in diameter) was fixed by polymethylmetacrylate bone cement. Postoperative course was uneventful. She can walk with one crutch and ride on/off a vehicles without help four months postoperatively. It is often difficult to reconstruct acetabulum with
Segmental bone transport (SBT) with an external fixator has become a standard method for treatment of
The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI). This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.Aims
Methods
The objective of this study was to consider whether an impaction bone graft (IBG) with their own bone tips surrounded with an X-changed rim mesh was useful when en bloc bone inplantation was not possible for a total knee replacement with
Bone allograft is the most widely accepted approach in treating patients suffering from large segmental bone defect regardless of the advancement of synthetic bone substitutes. However, the long-term complications of allograft application in term of delayed union and nonunion were reported due to the stringent sterilization process. Our previous studies demonstrated that the incorporation of magnesium ions (Mg2+) into biomaterials could significantly promote the gene up-regulation of osteoblasts and new bone formation in animal model. Hence, our group has proposed to establish an Mg2+ enriched tissue microenvironment onto bone allograft so as to enhance the bone healing. The decellularization and gamma irradiation process were performed on bovine bone allograft and followed by magnesium plasma treatment. To evaluate the biocompatibility and bioactivity, materials characterizations,
We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
Bone regeneration is a complicate biological process of the skeletal system leading to restoration of the limb function. This process becomes more challenging in a case of critical size defect ( A previous study in our lab tested the usage of encapsulating The objective of this study was to investigate a new polymer formulation in order to produce the best environmental support for adhesion, proliferation and differentiation of MSC. In this study we found out that with the usage of Polyvinylacetate
Hydrogen-bonds between MSC and the partial negative charge on the carboxyl group as well as on the oxygens of the plasticizer that is intertwined within the membrane monomers. Electrostatic bonds between the positive charge (+1) on the transformed group monomers and the negative charge of MSC’s protein membrane. In summary, we have only started to reveal the remarkable potential of using MSC, and there are still many obstacles to overcome. However, applying the findings from this study, namely inserting a membrane coated with MSC into a CSD may become a true biological treatment option.
Abstract. Approximately 20% of primary and revision Total Knee Arthroplasty (TKA) patients require multiple revisions, which are associated with poor survivorship, with worsening outcomes for subsequent revisions. For revision surgery, either endoprosthetic replacements or metaphyseal sleeves can be used for the repair, however, in cases of severe defects that are deemed “too severe” for reconstruction, endoprosthetic replacement of the affected area is recommended. However, endoprosthetic replacements have been associated with high complication rates (high incidence rates of prosthetic joint infection), while metaphyseal sleeves have a more acceptable complication profile and are therefore preferred. Despite this, no guidance exists as to the maximal limit of bone loss, which is acceptable for the use of metaphyseal sleeves to ensure sufficient axial and rotational stability. Therefore, this study assessed the effect of increasing bone loss on the primary stability of the metaphyseal sleeve in the proximal tibia to determine the maximal bone loss that retains axial and rotational stability comparable to a no defect control. Methods. to determine the pattern of bone loss and the average defect size that corresponds to the clinically defined defect sizes of small, medium and
In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in
Our previous rat study demonstrated an ex vivo-created “Biomimetic Hematoma” (BH) that mimics the intrinsic structural properties of normal fracture hematoma, consistently and efficiently enhanced the healing of
Aims. Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of
Aims.
Aims. Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in