Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 131 - 131
1 Apr 2019
Peckenpaugh E Maag C Metcalfe A Langhorn J Heldreth M
Full Access

Introduction. Aseptic loosening of total knee replacements is a leading cause for revision. It is known that micromotion has an influence on the loosening of cemented implants though it is not yet well understood what the effect of repeated physiological loading has on the micromotion between implants and cement mantle. This study aims to investigate effect of physiological loading on the stability of tibial implants previously subjected to simulated intra-operative lipid/marrow infiltration. Methods. Three commercially available fixed bearing tibial implant designs were investigated in this study: ATTUNE. ®. , PFC SIGMA. ®. CoCr, ATTUNE. ®. S+. The implant designs were first prepared using a LMI implantation process. Following the method described by Maag et al tibial implants were cemented in a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. The samples were subjected to intra- operative range of motion (ROM)/stability evaluation using an AMTI VIVO simulator, then a hyperextension activity until 15 minutes of cement cure time, and finally 3 additional ROM/stability evaluations were performed. Implant specific physiological loading was determined using telemetric tibial implant data from Orthoload and applying it to a validated FE lower limb model developed by the University of Denver. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the above model, 6 degree of freedom kinetics and kinematics for each activity was determined for each posterior stabilized implant design. Prior to loading, the 3-D motion between tibial implant and bone analog (micromotion) was measured using an ARAMIS Digital Image Correlation (DIC) system. Measurement was taken during the simulated DKB at 0.25Hz using an AMTI VIVO simulator while the DIC system captured images at a frame rate of 10Hz. The GOM software calculated the distance between reference point markers applied to the posterior implant and foam bone. A Matlab program calculated maximum micromotion within each DKB cycle and averaged that value across five cycles. The implant specific loading parameters were then applied to the three tibial implant designs. Using an AMTI VIVO simulator each sample was subjected to 50,000 DKB and 120,000 SD cycles at 0.8Hz in series; equating to approximately 2 years of physiological activity. Following loading, micromotion was measured using the same method as above. Results. Initial micomotion measurements during DKB activity for ATTUNE. ®. , PFC SIGMA. ®. CoCr, ATTUNE. ®. S+ were 155µm, 246µm, and 104µm, respectively, and following physiological loading were 159µm, 264µm, and 112µm, respectively. While there was statistical significance between the micromotion of implant designs (p<0.05), there was no significance between before and after loading. Conclusion. This study shows there is no significant change in micromotion after approximately 2 years of physiological loading. However, there is a significant difference in micromotion between implant designs


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 32 - 32
1 Feb 2020
Maag C Peckenpaugh E Metcalfe A Langhorn J Heldreth M
Full Access

Introduction. Aseptic loosening is one of the highest causes for revision in total knee arthroplasty (TKA). With growing interest in anatomically aligned (AA) TKA, it is important to understand if this surgical technique affects cemented tibial fixation any differently than mechanical alignment (MA). Previous studies have shown that lipid/marrow infiltration (LMI) during implantation may significantly reduce fixation of tibial implants to bone analogs [1]. This study aims to investigate the effect of surgical alignment on fixation failure load after physiological loading. Methods. Alignment specific physiological loading was determined using telemetric tibial implant data from Orthoload [2] and applying it to a validated finite element lower limb model developed by the University of Denver [3]. Two high demand activities were selected for the loading section of this study: step down (SD) and deep knee bend (DKB). Using the lower limb model, hip and ankle external boundary conditions were applied to the ATTUNE. ®. knee system for both MA and AA techniques. The 6 degree of freedom kinetics and kinematics for each activity were then extracted from the model for each alignment type. Mechanical alignment (MA) was considered to be neutral alignment (0° Hip Knee Ankle Angle (HKA), 0° Joint Line (JL)) and AA was chosen to be 3° varus HKA, 5° JL. It is important not to exceed the limits of safety when using AA as such it is noted that DePuy Synthes recommends staying within 3º varus HKA and 3º JL. The use of 5º JL was used in this study to account for surgical variation [Depuy-Synthes surgical technique DSUS/JRC/0617/2179]. Following a similar method described by Maag et al [1] ATTUNE tibial implants were cemented into a bone analog with 2 mL of bone marrow in the distal cavity and an additional reservoir of lipid adjacent to the posterior edge of the implant. Tibial implant constructs were then subjected to intra-operative ROM/stability evaluation, followed by a hyperextension activity until 15 minutes of cement curing time, and finally 3 additional ROM/stability evaluations were performed using an AMTI VIVO simulator. The alignment specific loading parameters were then applied to the tibial implants using an AMTI VIVO simulator. Each sample was subjected to 50,000 DKB cycles and 120,000 SD cycles at 0.8 Hz in series; approximating 2 years of physiological activity. After physiological loading the samples were tested for fixation failure load by axial pull off. Results. Following alignment specific physiological loading the average fixation pull-off load for MA was 3289 ± 400 N and for AA was 3378 ± 133 N (Figure 1). There was no statistically significant difference fixation failure load by axial pull-off between the two alignment types (p=0.740). Conclusion. This study indicated that anatomic alignment, as defined with the alignment limits of this study, does not adversely affect the fixation failure load of ATTUNE tibial implants. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 143 - 143
1 Jan 2016
Sakoda H Niimi S
Full Access

Since artificial joints are expected to operate for more than decades in human body, animal and clinical studies are not suitable for evaluation of their durability. Instead, in-vitro mechanical tests have been employed, but they cannot fully reproduce complex in-vivo mechanical and biochemical environment. For instance, lipids in synovial fluid have been known to be absorbed in ultra-high molecular weight polyethylene (UHMWPE) components of artificial joints in vivo, and recently it was found that absorbed lipids have potential to degrade UHMWPE. In order to assure clinical relevance of the in-vitro mechanical tests, understanding of the effect of the in-vivo environment on mechanical properties is indispensable. However, well-developed mechanical tests cannot be applied to retrieved components, because they require large specimens. In this study, we attempted to develop methods to evaluate mechanical properties of retrieved UHMWPE components. We prepared five kinds of UHMWPE. Those are molded UHMWPE made from GUR 1020 resin without any further treatment, remelted highly crosslinked UHMWPE, annealed highly crosslinked UHMWPE, squalene absorbed UHMWPE which was prepared by immersing in squalene at 80°C for 7 days (SQ) and squalene absorbed and artificially aged UHMWPE which was prepared by artificially aging SQ at 80°C for 21 days in air (SQA). SQ and SQA were employed in this study to mimic lipid absorption and lipid induced degradation. These materials were tested by two well-established mechanical tests, namely, tensile tests and compression tests, and two proposed mechanical tests that can be applied to retrieved components, namely, tensile punch tests and micro indentation tests. It was possible to clearly identify the difference between materials by any of test methods used in this study. Stiffness obtained from tensile punch tests and elastic modulus obtained from micro indentation tests were shown to be highly correlated with elastic modulus obtained from compression tests except for SQA, which was inhomogeneous due to degradation at the surfaces. The results showed that the elastic modulus of the local surface could be evaluated by micro indentation tests, while the average of that of the entire specimen could be evaluated by compression tests. ield load, fracture load and maximum load obtained from tensile punch tests showed little correlation with yield stress, fracture stress and maximum stress obtained from tensile tests, respectively. These differences were considered to be attributed to the differences in a stress condition between these two test methods. It is multi-axial tension in tensile punch tests, while it is uniaxial in tensile tests. Although some of the parameters obtained by tensile punch tests showed no or limited correlation with those obtained by tensile tests, it was possible to clearly identify the difference between materials by these proposed test methods. In particular, micro indentation tests could evaluate the mechanical properties very locally. These proposed test methods have the potential to provide useful information on mechanical properties of retrieved UHMWPE components


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 42 - 42
1 May 2019
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO. 2. gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used vs. use of pulsatile saline lavage alone. Meneghini used this pressurised carbon dioxide system to study the influence of NO tourniquet use in TKA. He found a significant lowering of opioid consumption postoperatively. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 124 - 124
1 Jun 2018
Jones R
Full Access

The development of more wear resistant biomaterials and better locking mechanisms for the polyethylene into the tibial base has significantly reduced polyethylene wear as a reason for revision TKA. Aseptic loosening is now the primary cause for revision TKA. Loosening can be caused by multifactorial operative issues: 1] patient selection, 2] implant alignment, 3] cementing technique. Furthermore, aseptic loosening occurs at a consistent rate over time. Increased cement penetration is important to counter bone resorption. Increasing penetration also improves cement mantle toughness leading to better mechanical integrity of the bone-cement interface and reduces bone-cement interface stress. It is important to recognise that a cleaner and drier interface does improve bone-cement penetration. Techniques to improve the process include better cement formulations, drilling sclerotic bone, devices and implant features to increase pressurization, using negative pressure suction ports in the tibia. We have extensive experience with CarboJet, a method of CO2 gas jet cleaning and drying. This experience was developed during 20 years of performing TKA with NO tourniquet. Schnetler et al found that the “use of a tourniquet in TKA causes a paradoxical increase in total blood loss”. So, NO tourniquet TKA is becoming the new paradigm for knee arthroplasty in reconstructive orthopaedics. Goldstein reported that pressurised carbon dioxide jet lavage resulted in a 35% increase in cement penetration depth when used versus use of pulsatile saline lavage alone. Another important factor in increasing the cement interdigitation is the influence of lipids which significantly weakens the bond at the interfaces. If motion is allowed during cementation there is additional loss of penetration and therefore fixation. The pressurised carbon dioxide delivered by the CarboJet system actually pushes the lipid, fatty marrow up and out of the bone allowing it to be suctioned or lap dried from the interface surface. The NO tourniquet technique and the use of carbon dioxide jet gas delivery to improve the bone-cement interface in TKA will be demonstrated


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 52 - 52
1 Aug 2020
Abuhantash M Rauch F Rak J Hamdy RC Al-Jallad H
Full Access

Osteogenesis Imperfecta (OI) is a heritable bone disorder characterized by bone fragility and often caused by mutations in the Type I collagen-encoding genes COL1A1 and COL1A2. The pathophysiology of OI, particularly at the cellular level, is still not well understood. This contributes to the lack of a cure for this disorder as well as an effective preventive or management options of its complications. In the bone environment, mesenchymal stem cells (MSCs) and osteoblasts (Ob) exert their function, at least partially, through the secretion of extracellular vesicles (EV). EV is a heterogeneous group of nanosized membrane-enclosed vesicles that carry/transfer a cargo of proteins, lipid and nucleic acids from the secreting cell to its target cells. Our objective is to characterize EVs secreted by human control (HC)- and OI-MSCs and their derived Obs, with focus on their protein content. We hypothesize that there will be differences in the protein content of EVs secreted by OI-Obs compared to HC-Ob, which may indicate a deviation from healthy Ob behavior and, thus, a role in OI pathophysiology. MSCs were harvested from the adipose tissue of four COL1A1-OI and two HC patients. They were proliferated in an EV-depleted media, then induced to differentiate to extracellular matrix (ECM)-producing osteoblasts, which then gets mineralized. EVs secreted by MSCs (MSC-EV) and Obs (Ob-EV) were then purified and concentrated. Using liquid chromatography- tandem mass spectrometry, proteomic analysis of the EV groups was done. A total of 384 unique proteins were identified in all EVs, 373 were found in Vesiclepedia indicating a good enrichment of our samples with EV proteins. 67 proteins of the total 384 were exclusively or significantly upregulated (p-value < 0 .05) in OI-Ob-EV and 28 proteins in the HC-Ob-EVs, relative to each other. These two groups of differentially expressed proteins were compared by Gene Ontology (GO) analysis of their cellular compartment, molecular functions and biological processes. We observed that there were differences in the cellular origin of EV-proteins, which may indicate heterogeneity of the isolated EVs. Molecular function and biological process analyses of the HC-Ob-EV proteins showed, as expected, predominantly calcium-related activities such as extracellular matrix (ECM) mineralization. OI-Ob-EV proteins were still predominantly exhibiting ECM organization and formation functions. Annexins A1,2,4,5 and 6 were differentially and significantly upregulated by the HC-Ob-EVs. Fibronectin (FN), Fibulin-1 and −2, and Laminins (α4 & γ1), which are amongst the early non-collagenous proteins to form the ECM, were differentially and significantly upregulated in the OI-Ob-EVs. We concluded that the persistent expression of Fibronectin (FN), Fibulin-1 and −2, and Laminins in OI-Ob-EVs might indicate the presence of an immature ECM that the OI-Obs are trying to organize. ECM mineralization is largely dependent on the presence of an organized mature ECM, and this being compromised in OI bone environment, may be a contributor to the bone fragility seen in these patients. Annexins, which are calcium-binders that are vital for ECM mineralization, were significantly downregulated in the OI-Ob-EVs and this may be a further contributor to ECM mineralization impairment and bone fragility


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 52 - 52
1 May 2012
S. C C. D F. V A. C
Full Access

Background. Rotator cuff tears pose a huge socioeconomic burden. Our study uses Fourier transform infrared spectroscopy (FTIR) as it is a quick, non-manipulative and non-destructive test, which can identify a wide range of chemical targets from small intraoperatively obtained specimens. The aim of this study was (i) to characterise the chemical and structural composition of rotator cuff tendons and (ii) to identify structural differences between anatomically distinct tear sizes. Such information may help to identify specific biomarkers of rotator cuff tear pathologies, which in turn could allow early identification and monitoring of disease progression. FTIR may provide insight into the different healing rates of different tear sizes. Methods. The infrared spectra of 81 torn rotator cuff tendons were measured using a FTIR spectrometer. The rotator cuff tear sizes were classified as partial, small, medium, large and massive, and compared to 14 normal controls. All spectra were classified using standard multivariate analysis; principal component analysis, partial least square and discriminant function analysis. Results. FTIR readily differentiated between normal and torn tendons, and different tear sizes. We identified the key discriminating molecules and spectra altered in torn tendons as: (i) carbohydrates/phospholipids (1030-1200 cm. -1. ), (ii) collagen (1300-1700, 3000-3350 cm. -1. ) and (iii) lipids (2800-3000 cm. -1. ). Partial tears were chemically distinct from normal and small tears, and primarily involved a reduction in collagen type II. Conclusion. This study has demonstrated that FTIR can identify different sizes of rotator cuff tear based upon distinguishable chemical and structural features. The onset of rotator cuff tear pathology is mainly due to alterations of the collagen structural arrangements, with associated changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used intraoperatively to determine the quality of the tendon and extent of disease, thus guiding surgical repairs or for monitoring of treatments


Bone & Joint Open
Vol. 4, Issue 4 | Pages 250 - 261
7 Apr 2023
Sharma VJ Adegoke JA Afara IO Stok K Poon E Gordon CL Wood BR Raman J

Aims

Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds.

Methods

A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 360 - 360
1 Mar 2013
Wang T Pelletier M Bertollo N Crosky A Walsh W
Full Access

Introduction. Implant contamination prior to cement application has the potential to affect the cement-implant bond. the consequences of implant contamination were investigated in vitro using static shear loading with bone cement and titanium dowels of differing surface roughness both with, and without contamination by substances that are likely to be present during surgery. Namely; saline, fat, blood and oil, as a negative control. Methods. Fifty Titanium alloy (Ti-6Al-4V) dowels were prepared with two surface finishes comparable to existing stems. The roughness (Ra and Rq) of the dowel surface was measured before and after the pushout test. Four contaminants (Phosphate Buffered Saline (PBS), ovine marrow, ovine blood, olive oil) were prepared and heated to 37°C. Each contaminant was smeared on the dowel surface completely and uniformly approximately 4 minutes prior to implantation. Samples were separated into ten groups (n=5 per group) based on surface roughness and contaminant. Titanium alloy dowels was placed in the center of Polyvinyl chloride (PVC) tubes with bone cement, and equilibrated at 37°C in PBS for 7 days prior to mechanical testing. The push out test was performed at 1 mm per minute. The dowel surface and cement mantel were analyzed using a Scanning Electron Microscopy (SEM) to determine the distribution and composition of any debris and contaminates on the surface. Results. All contaminants decreased stem-bone cement interfacial shear strength. Saline produced the greatest decrease, followed by blood. The effect of fat was less pronounced and similar to that of oil likely due to the strong lipid solvent properties of the methacrylate monomer. For rough dowels, there were differences in ultimate shear strength between control and contaminated groups (p<0.001). Blood and saline groups had lower ultimate shear strength compared to fat and oil (p<0.05) (fig. 1). The ultimate shear strength for smooth samples was not significantly affected by contamination. Increasing surface roughness increased the interfacial bonding strength, even in the presence of contaminants. In control, fat and oil groups, the effect of roughness are significant (p<0.001, p<0.05 and p<0.001 respectively) (fig. 1). Scanning Electron Microscopy (SEM) showed that contaminants influence the interfacial bond by different mechanisms. Although rough surfaces were associated with higher bond strength, they also generated more debris, which could negatively affect the longevity of the implant bond (fig. 2 and fig. 3). Conclusion. The results of this study underscores the importance of keeping an implant free from contamination, and that if contamination does occur, a saline rinse may further decrease the stability of an implant. Contaminants did not significantly affect the bond strength between bone cement and smooth Ti stem, although a trend of improved properties was seen in the presence of lipid based contaminants. Therefore, the influence of contaminants is more important to the shape-closed type stem. Increasing surface roughness dramatically improved the load carrying capability of the implant-cement interface even with contaminants


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 72 - 72
1 Nov 2015
Callaghan J
Full Access

Moderately to highly crosslinked UHMWPEs have functioned for at least a decade with dramatic reduction in wear volumes in THA. This wear reduction has been associated with a markedly reduced incidence of radiographic osteolysis. However, CT studies have demonstrated that osteolysis is not completely eliminated. There, however, are still questions which include: Is cost for further improvements warranted?; Is 10 years long enough to assure that no clinically relevant osteolysis occurs, especially in younger patients?; Do we have any data demonstrating improvement in revision scenarios?; With high levels of crosslinking (requiring more radiation) some fractures have been demonstrated at the region of the locking mechanism of the liner to shell. Will this prevalence increase? These materials are softer and can cause quicker crack propagation than conventional polyethylene.; Do better locking mechanisms need to be developed to prevent fracture problems that have been demonstrated in the present generation cementless designs?; Do we need more information as to the optimal counterface choice (cobalt chrome, ceramic, oxinium)?; Can hip results be extrapolated to the knee where fatigue failure is a major problem both on the bearing surface and with the locking mechanism?; Is the oxidation we are beginning to see on the surface of retrieved liners (thought to be related to lipids from the synovium and cyclical loading) the tip of the iceberg?. I too am encouraged by the mid-term results of crosslinked polyethylene. Our own data supports it. However, we must keep in mind the questions outlined


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 40 - 40
1 May 2016
Bergadano D Lambert P Bernardoni M Siccardi F
Full Access

Since its introduction in total hip replacements in the 1960's, Ultra High Molecular Weight Polyethylene (UHMWPE) has played a major role as a bearing component material for joint arthroplasty. Concerns were raised when issues of wear resistance became apparent, and therefore Highly Crosslinked Polyethylenes were introduced. Such materials undergo a thermal treatment to quench the free radicals and reduce progressive oxidation. However, said thermal treatment weakens the material mechanical properties and hence the use of antioxidants has been proposed and implemented in clinical use, mainly Vitamin-E. This can be added to the material before or after irradiation. If it is done before, part of the anti-oxydant is consumed during irradiation and so will not be available for its main purpose, and part reacts before irradiation with the free radicals thus reducing the crosslinking effect. If it is added after irradiation, high temperatures are required in order to diffuse it in the bulk material, and anyway the surface will be mainly rich in antioxidant. However, Vitamin-E tends to neutralize the free radicals on the oxidized lipid chain present in our body fluids and so in direct contact with the prosthetic components: such mechanism reduces the Vitamin-E quantity available for anti-oxidation purposes in the long run. A UHMWPE doped with Hindered Amine Light Stabilizer (HALS) has been developed and tested for applications in large joint replacements where highest resistance to wear and tough mechanical properties are simultaneously required, such as tibial inserts for knee joints or acetabular inserts for large diameter heads. Mechanical and biocompatibility tests were run in accordance with ASTM F 2565-06 and ISO 10993-1 with successful results and good reproducibility. In particular, electro spin resonance exhibited a very high level of free radicals in the three samples, which confirms the properties of this new material. Free radicals are the result of the activation of the HALS molecules during irradiation, creating nitroxide radicals that will destroy the residual alkyl radicals responsible for the oxidation before and after implantation. Biocompatibility tests proved absence of cytotoxicity, sensitization, irritation, genotoxicity or pyrogenic reactions. The possible future applications for this new material in the arthroplasty field will be discussed along with the expected advances and advantages


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 111 - 111
1 May 2014
Berend M
Full Access

Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay and opened the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is preemptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and long acting local anesthetics with the addition of injectable ketorolac and acetaminophen. Over the past two years utilising this type of program over 60% of our partial knee replacement patients are now returning home the day of surgery. We currently utilise a long acting local anesthetic delivery medication consisting of microscopic, spherical, lipid-based particles composed of a honeycomb-like structure of numerous nonconcentric internal aqueous chambers containing encapsulated bupivacaine separated from adjacent chambers by lipid membranes. Bupivacaine is released from the particles with diffusion of the drug over an extended period of time that more closely matches the time course of postsurgical pain following joint replacement surgery. Trials have demonstrated that a single dose administered via deep tissue infiltration is effective at reducing pain up to 72 hours


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 35 - 35
1 Jul 2014
Berend M
Full Access

Perhaps the most significant developments in joint replacement surgery in the past decade have been in the area of multimodal pain management. This has reduced length of stay in the inpatient hospital environment opening the opportunity for cost savings and even outpatient joint replacement surgery for appropriately selected patients. The hallmark of this program is pre-emptive pain control with oral anti-inflammatory agents, gabapentin, regional anesthetic blocks that preserve quad function for TKA (adductor canal block) and pericapsular long acting time release local anesthetics with the addition of injectable ketorolac and IV acetaminophen. Over the past two years utilising this type of program over 60% of our partial knee replacement patients are now returning home the day of surgery. We currently utilise a long acting local anesthetic delivery medication consisting of microscopic, spherical, lipid-based particles composed of a honeycomb-like structure of numerous nonconcentric internal aqueous chambers containing encapsulated bupivacaine separated from adjacent chambers by lipid membranes. Bupivacaine is released from the particles with diffusion of the drug over an extended period of time that more closely matches the time course of postsurgical pain following joint replacement surgery. Trials have demonstrated that a single dose administered via deep tissue infiltration is effective at reducing pain up to 72 hours. This has been trialed in TKA as well


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 57 - 57
1 Jan 2016
Moussa H Scemama C Dora C
Full Access

Introduction. The wear performances of polyethylene in THA are influenced at a great extent by the manufacturing process. During the past decade, highly cross-linked materials have been developed with encouraging results in terms of wear, whereas another body of the literature has indicated potential catastrophic failures related to reduced fatigue properties and oxidation due to lipids adsorption and fatigue mechanism. Also, each of the materials available on the market has its own processing characteristics. Therefore, a specific evaluation is necessary for each of them. The aim of this retrospective study was to evaluate the wear properties of metal-back sockets using a first generation highly cross-linked PE in a consecutive series of primary THAs. Materials. Between August 2005 and December 2007, 80 patients (80 hips) with a mean age of 62.7 ± 8.9 years were included. All patients had a 28mm CoCr femoral head articulating with a highly cross-linked insert (Highcross®, Medacta SA) that was 100 Mrads gamma radiated, remelted at 150°C, and ethylene oxide sterilized. The primary criterion for evaluation was linear head penetration measurement using the Martell system, performed by an investigator trained to this technique. Also, steady state wear was calculated. Functional results were evaluated according to WOMAC score. Results. At the minimum of 5-year follow-up, complete data were available for analysis in 67 patients at a mean follow-up of 5.5 years (5.0 to 6.8). At the latest follow-up, the mean femoral head penetration measured 0.07 ± 0.23 mm/year (median of 0.09). The steady state penetration from one year onward representing wear was −0.03 ± 0.25 mm/year (median of 0.01). The WOMAC score significantly increased from 16.5 ± 5.93 preoperatively to 4.12 ± 5.5 at the latest follow-up (Mann-Whitney, p < 0.001). No case of polyethylene insert fracture was recorded, and no hip had signs of periprosthetic osteolysis on the acetabular or femoral side. Discussion and conclusion. The minimal 5-year results of this retrospective study indicate that this highly cross-linked and remelted polyethylene had a low wear rate. The use of highly cross-linked inserts seem to be safe option provided that a minimal thickness of polyethylene is preserved. Longer-term results are needed to warrant that these mid-term data will generate less occurrence of osteolysis and aseptic loosening


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 132 - 132
1 Sep 2012
Oral E Neils A Ghali B Wannomae K Spiegelberg S Muratoglu O
Full Access

Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing, low pressure annealing, and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 6 - 6
1 Feb 2013
Blackburn J Knapp J Faul C Blom A Mansell J
Full Access

Successful osseointegration requires the production of a mechanically competent collagenous matrix, by osteoblasts, at the implant site. Lysophosphatidic acid (LPA) is a bioactive lipid which we discovered interacts with vitamin D3 (D3) to secure human osteoblast (hOB) maturation on both titanium (Ti) and hydroxyapatite. We therefore covalently attached LPA and a related compound, (3S) 1-fluoro-3-hydroxy-4-butyl-1-phosphate (FHBP), to both solid and porous Ti discs and seeded them with hOBs to assess their ability to support D3-induced cell maturation. Solid functionalised discs were washed and reused a further two times, whilst other discs were stored for 6 months. Increased alkaline phosphatase (ALP) activity indicated that both LPA and FHBP-modified Ti serve as superior substrates for securing D3-induced hOB maturation compared to unmodified metal (p < 0.001). Although total ALP activity was less for cells on recycled discs and after storage, enzyme levels were still significantly greater compared to hOBs grown on control Ti. LPA and D3 co-treatment also resulted in an increase in osteocalcin (∼17ng/ml versus 6ng/ml for D3 alone, P < 0.001) and collagen synthesis (∼310pg/ml versus <10pg/ml for D3 alone, P < 0.001). Research is ongoing to evaluate the efficacy of our modified Ti surfaces to secure hOB formation from their stem cell progenitors


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 44 - 44
1 Jan 2016
Takahashi Y Pezzotti G Yamamoto K
Full Access

Introduction. Vitamin-E (VE, dl-α-tocopherol) is a powerful antioxidant for highly cross-linked polyethylene (XLPE). It was previously reported that VE-stabilized XLPE succeeded in retaining no measurable oxidation even after accelerated aging tests combined with cyclic loading or lipid absorption. Thus, VE-stabilized XLPE is nowadays recognized worldwide as one of the new standard materials in total hip arthroplasty (THA). However, the effects of such VE addition on physical behavior of polyethylene remain to be fully elucidated by contrast to the clear statement of its chemical role (i.e., the enhanced oxidation resistance) in the published literature. In this presentation, we shall attempt to provide those missing notations and to explore the microstructural and biomechanical role of VE in XLPE acetabular liner on the molecular scale. Methods. The two different types of XLPE acetabular liners, VE-blended and VE-free (no VE-blended) component (n=3 for each sample), were investigated by means of laser-scanning confocal polarized micro-Raman spectroscopy. In both components, the cross-linking was achieved by electron-beam irradiation with a total dose of 300kGy in vacuum. Raman spectroscopy offers non-destructive, contactless, and high-resolution analyses of polymer morphologies. In this study, we performed an in-depth profiling of crystalline and non-crystalline phase (i.e., amorphous and intermediate phase between crystalline and amorphous regions) percentages and degree of molecular orientation in the above two liners before and after introducing the 10% plastic deformation via uniaxial compression loading at room temperature. These results were also compared to the morphological analyses under the same compression conditions performed on the virgin conventional polyethylene (Virgin liner) without radiation crosslinking as well as VE blending. Results. In the deformed state, Virgin and VE-blended liner showed a pronounced development of the surface crystalline texture. On the other hand, deformation-induced texturing occurred at much less extent in VE-free liner. According to the results of phase percentages, there was no crystallinity change in VE-blended liner by contrast to the marked increase of crystallinity in Virgin and VE-free liner after compression deformation. Alternatively, amorphous-to-intermediate phase transition was confirmed in VE-blended liner. Discussion/Conclusion. We found molecular rearrangement and phase transitions in crystalline and non-crystalline phase as a reconstruction process after plastic deformation in the investigated samples, which can be deeply related to their wear and mechanical properties. The morphological comparisons between Virgin and VE-free liner suggested that the intermolecular cross-linked networks in polyethylene highly restricted the molecular chain mobility as evidenced by few texture evolutions in VE-free liner. On the other hand, the comparisons between VE-free/-blended liner indicated that the presence of VE might promote molecular chain mobility even in the cross-linked structure, resulting in the significant surface texturing. These physical and structural aspects of VE blending would imply the possibility of the increased micromechanical wear through the strain-softening and weakening phenomena due to the molecular reorientation during in-vivo service. However, in other words, wear resistance of VE-blended liner might be further maximized by the more rigid control of molecular movements


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 10 - 10
1 May 2016
MacDonald D Schachtner J Chen A Cates H Klein G Mont M Kraay M Malkani A Lee G Hamlin B Rimnac C Kurtz S
Full Access

Introduction. Highly crosslinked polyethylene (HXLPE) was clinically introduced approximately a decade and a half ago to reduce polyethylene wear rates and subsequent osteolysis. Clinical and radiographic studies have repeatedly shown increased wear resistance, however concerns of rim oxidation and fatigue fracture remain. Although short to intermediate term retrieval studies of these materials are available, the long-term behavior of these materials remains unclear. Methods. Between 2000 and 2015, 115 1st generation HXLPE acetabular liners implanted for 5 or more years were collected and analyzed as part of an ongoing, multi-institutional orthopaedic implant retrieval program. There were two material cohorts based on thermal processing (annealed (n=45) and remelted (n=70)). Each cohort was stratified into two more cohorts based on implantation time (5 – 10 years and >10 years). For annealed components, the intermediate-term liners (n=30) were implanted on average (±SD) for 7.3 ± 1.7 years while the long-term liners (n=15) were implanted for 11.3 ± 1.8 years. For remelted components, the intermediate-term liners (n=59) were implanted on average (±SD) for 7.2 ± 1.3 years while the long-term liners (n=11) were implanted for 11.3 ± 1.2 years. For each cohort, the predominant revision reasons were loosening, instability, and infection (Figure 1). Short-term liners (in-vivo <5ys) from previous studies were analyzed using the same protocol for use as a reference. For oxidation analysis, thin slices (∼200 μm) were taken from the superior/inferior axis and subsequently boiled in heptane for 6 hours to remove absorbed lipids that may interfere with the oxidation analysis. 3mm line profiles (in 100μm increments) were taken perpendicular to the surface at each region of interest. Oxidation indices were calculated according to ASTM 2102. Penetration was measured directly using a calibrated micrometer (accuracy=0.001mm). Results. The penetration rates for both the annealed and remelted cohorts were low and similar between the two material cohorts (Figure 2). There were several cases of fractured zirconia heads associated with a manufacturer recall that resulted in higher penetration rates. At the bearing and rim surfaces, the annealed liners had higher oxidation indices than the remelted components (p<0.001). For the remelted components, the intermediate-term liners had higher oxidation indices than the short-term liners (p=0.001). For the annealed liners, both the long-term and intermediate-term liners had higher oxidation indices compared with the short-term liners (p=0.007 and 0.001, respectively). Discussion. Thermally treated first generation HXLPEs were introduced to reduce polyethylene wear and prevent oxidative degradation. The results of this study suggest that both thermally treated HXLPEs demonstrate lower penetration rates than conventional polyethylene, however, the resistance to oxidation was formulation dependent. Specifically, the remelted components were more effective at preventing oxidation than the annealed liners. However, despite the lack of measurable free radicals, we were able to observe temporal changes in the oxidation of the remelted liners. Future work will include analysis of long-term 1stgeneration annealed HXLPE to fully assess its performance in the second decade of service


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 11 - 11
1 May 2016
MacDonald D Mehta K Klein G Hartzband M Levine H Mont M Kurtz S
Full Access

Introduction. Thermally treated 1st generation highly crosslinked polyethylenes (HXLPE) have demonstrated reduced penetration and osteolysis rates, however, concerns still remain with respect to oxidative stability and mechanical properties of these materials. To address these concerns, manufacturers have introduced the use of antioxidants to quench free radicals while maintaining the mechanical properties of the HXLPE. Two common antioxidants are α-tocopherol (Vitamin-E) and pentaerythritol tetrakis (PBHP). These may be either mixed prior to consolidation, or diffused throughout the polymer after consolidation and irradiation. In vitrostudies have shown that these materials are oxidatively stable and have improved mechanical properties compared to 1st generation HXLPEs; however, few studies have investigated the in vivo performance of anti-oxidant stabilized HXLPE. The purpose of this study was to investigate the revision reasons, oxidation, and mechanical properties of retrieved short-term anti-oxidant HXLPE. Methods. Between 2010 and 2015, 73 anti-oxidant HXLPE components were collected as a part of an IRB approved, multi-institutional retrieval analysis program during routine revision surgery. Of the seventy-three components, 30 (41%) were acetabular liners, whereas, 43 were tibial inserts. The components were fabricated from three different materials: Vitamin-E Diffused HXLPE (n=30; E1, Biomet), Vitamin-E Blended (n = 41; Vivacit-E, Zimmer) and PBHP blended (n = 2, AOX, DePuy). The hip and knee components were implanted for 0.7 ± 0.8 years (Range: 0.0–2.25 years) and 0.8 ± 1.1 years (Range: 0.0–4.5 years), respectively. Implantation time, patient weight, age, gender, and activity levels were similar between hip and knee components (Table 1). For oxidation analysis, thin slices (∼200μm) were taken from medial condyle and central eminence of the tibial inserts or the superior/inferior axis from hip components. The slices were boiled in heptane for six hours to extract lipids absorbed in vivo. 3-millimeter FTIR line scans were taken perpendicular to the surface of interest, according to the ASTM F2102. Mechanical properties were assessed using the small punch test (ASTM F2183). Forty-three explants were available for destructive testing. Results. The predominant revision reasons were loosening, instability, and infection (Figure 1). Oxidation was low in both the hip and knee components (Mean OI≤0.1; Figure 2). For both tibial inserts and acetabular liners, there was no correlation between implantation time and oxidation indices (p>0.05). In the tibial inserts, the AP face had slightly higher oxidation indices than the articulating surface (Mean difference = 0.04; p=0.03). There was no difference in ultimate load between hips and knees at the surface (p=0.14) or the subsurface (p=0.38). Discussion. This study analyzed the revision reasons, oxidative stability, and mechanical properties of short-term retrieved 2nd generation HXLPE. The observations of this study show that anti-oxidant infused HXLPE exhibited low oxidative indices (Mean OI<0.1). There was no difference observed in the mechanical properties of these materials between hip and knee applications. However, this study is limited by short implantation times. This is unavoidable because the materials have only recently become clinically available. The data presented serves as a benchmark for future studies when longer-term retrieved implants become available


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 124 - 124
1 May 2012
Ganeshalingam R Oliver R Musgrove T Yu Y
Full Access

The biological properties of morselised bone allograft treated with either a supercritical fluid process or low-dose (15 kGy) gamma irradiation were compared using radiological, histological and immunohistological techniques. The aims were to investigate any differences in the biological properties of supercritical fluid treated allograft and low-dose gamma irradiated allograft in-vivo. Rabbit allograft were cleaned of all soft tissue, cartilage and processed into ‘corticancellous crunch’ using a Noviomagus Bone Mill. Pooled samples were either gamma irradiated (15 kGy) or treated by NovaSterilis using super critical carbon dioxide. A well-reported tibial defect model in ten rabbits was used to examine the in vivo response of the different treatments at two and four weeks following surgery (n=5 per time point). Radiographic (x-ray, CT and micro CT), histology and immunohistochemistry was used to assess the in vivo response. Radiographic results revealed an initial response to the gamma-irradiated samples compared to SCF. Histology confirmed this reaction to be inflammatory in nature at two weeks that continued at four weeks for the gamma irradiated samples. In contrast, the SCF treated sample demonstrated new bone formation while the inflammatory reaction was muted compared to the gamma irradiated samples. Four week x-rays and histology confirmed new bone formation in both groups while the lack of significant inflammatory response in the SCF group was noted. Allograft sterilisation techniques do not result in the same initial response when evaluated in vivo. Removal of lipids and cellular debris following SCF treatment may influence the in vivo response. While both techniques can provide a sterile product, the in vivo response requires further investigation