Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_13 | Pages 13 - 13
17 Jun 2024
Aizah N Haseeb A Draman M
Full Access

Insertional Achilles tendinitis with considerable degeneration that failed non-operative treatment typically requires tendon debridement and reattachment to bone. It is common practice for tendons to be reattached back with anchor sutures, but this poses a challenge to patients who are not able to afford them. Bony anchorage of tendons may be performed by passing sutures through tunnels, but the strength of repair compared to by using anchors is not known. We investigated the load at clinical and catastrophic failure of these two methods of reattachment. Sixteen paired Achilles tendons along with the calcaneus were harvested from eight fresh frozen cadavers. Paired randomization was done. For the anchor suture group, two 5’0 anchors with polyethylene #2 sutures were used for reattachment whereas for the suture only group, tendons were reattached to bone using braided polyester #2 sutures via two bony tunnels. All samples were mounted on a materials testing system and preloaded at 50N for 60sec before load to failure at a rate of 1mm/sec. With the assumption that preloading has removed tendon crimp and any subsequent extension is a result of gapping at the repair site, loads at 5mm, 10mm, 15mm, and 20mm of extension were noted as well as the maximal load at failure. We found higher loads were needed to cause an extension of 5 to 20mm in the suture only group compared to the anchor suture group but these data were not significant. On the other hand, the anchor suture group required higher loads before catastrophic failure occurred compared to the suture only group, but this again is not significant. We conclude that suture only reattachment of the Achilles tendon is comparable in strength with anchor suture reattachment, and this method of reattachment can be considered for patients who do not have access to anchor sutures


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXII | Pages 27 - 27
1 May 2012
Oddy M Konan S Meswania J Blunn G Madhav R
Full Access

Medial Displacement Osteotomy (MDO) of the os calcis is used to correct the hind foot valgus in a flat foot deformity. Screw fixation is commonly used although contemporary locking plate systems are now available. This study tested the hypothesis that a 10mm MDO would support a higher load to failure with a locked step plate than with a single cannulated screw. Materials and Methods. Eight pairs of embalmed cadaveric limbs harvested 10cm below the knee joint were axially loaded using a mechanical testing rig. Two pairs served as non-operated controls loaded to 4500N. The remaining limbs in pairs underwent a 10mm MDO of the os calcis and were stabilised with a locked step plate or a 7mm cannulated compression screw. One pair was loaded to 1600N (twice body weight) as a pilot study and the remaining 5 pairs were loaded to failure up to 4500N. The force-displacement curve and maximum force were correlated with observations of the mechanism of failure. Results. In one pair of control limbs, failure occurred with fractures through both os calcis bones, whilst the other pair did not undergo mechanical failure to 4500N. In the pilot osteotomy, the plate did not fail whilst loss of fixation with the screw was observed below 1600N. For the remaining five pairs, the median (with 95% Confidence Intervals) of the maximum force under load to failure were 1778.81N (1099.39 – 2311.66) and 826.13N (287.52 – 1606.67) for the plate and screw respectively (Wilcoxon Signed Rank test p=0.043). In those with screw fixation loaded to 4500N, the tuberosity fragment consistently failed by rotation and angulation into varus. Conclusion. In this model of load to failure with a medial displacement os calcis osteotomy, a locked step plate supported a significantly higher maximum force than a single large cannulated screw


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1175 - 1181
1 Sep 2018
Benca E Willegger M Wenzel F Hirtler L Zandieh S Windhager R Schuh R

Aims. The traditional transosseus flexor hallucis longus (FHL) tendon transfer for patients with Achilles tendinopathy requires two incisions to harvest a long tendon graft. The use of a bio-tenodesis screw enables a short graft to be used and is less invasive, but lacks supporting evidence about its biomechanical behaviour. We aimed, in this study, to compare the strength of the traditional transosseus tendon-to-tendon fixation with tendon-to-bone fixation using a tenodesis screw, in cyclical loading and ultimate load testing. Materials and Methods. Tendon grafts were undertaken in 24 paired lower-leg specimens and randomly assigned in two groups using fixation with a transosseus suture (suture group) or a tenodesis screw (screw group). The biomechanical behaviour was evaluated using cyclical and ultimate loading tests. The Student’s t-test was performed to assess statistically significant differences in bone mineral density (BMD), displacement, the slope of the load-displacement curves, and load to failure. Results. The screw group showed less displacement (loosening) during cyclical loading, which was significant during 300, 500, 600, 700, 800, 900, and 1000 cycles (p < 0.05: other cycles: 0.079 < p < 0.402). Compared with the suture group, the screw group had higher mean ultimate load values (133.6 N, . sd. 73.5 vs 110.1 N,. sd. 46.2; p = 0.416). Conclusion. Fixation of the FHL tendon with a tenodesis screw enables a less invasive procedure to be undertaken and shows similar biomechanical behaviour and primary strength compared with fixation using a transosseus suture. Cite this article: Bone Joint J 2018;100-B:1175–81


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1431 - 1442
1 Dec 2024
Poutoglidou F van Groningen B McMenemy L Elliot R Marsland D

Lisfranc injuries were previously described as fracture-dislocations of the tarsometatarsal joints. With advancements in modern imaging, subtle Lisfranc injuries are now more frequently recognized, revealing that their true incidence is much higher than previously thought. Injury patterns can vary widely in severity and anatomy. Early diagnosis and treatment are essential to achieve good outcomes. The original classification systems were anatomy-based, and limited as tools for guiding treatment. The current review, using the best available evidence, instead introduces a stability-based classification system, with weightbearing radiographs and CT serving as key diagnostic tools. Stable injuries generally have good outcomes with nonoperative management, most reliably treated with immobilization and non-weightbearing for six weeks. Displaced or comminuted injuries require surgical intervention, with open reduction and internal fixation (ORIF) being the most common approach, with a consensus towards bridge plating. While ORIF generally achieves satisfactory results, its effectiveness can vary, particularly in high-energy injuries. Primary arthrodesis remains niche for the treatment of acute injuries, but may offer benefits such as lower rates of post-traumatic arthritis and hardware removal. Novel fixation techniques, including suture button fixation, aim to provide flexible stabilization, which theoretically could improve midfoot biomechanics and reduce complications. Early findings suggest promising functional outcomes, but further studies are required to validate this method compared with established techniques. Future research should focus on refining stability-based classification systems, validation of weightbearing CT, improving rehabilitation protocols, and optimizing surgical techniques for various injury patterns to ultimately enhance patient outcomes.

Cite this article: Bone Joint J 2024;106-B(12):1431–1442.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 561 - 569
1 Oct 2018
Yang X Meng H Quan Q Peng J Lu S Wang A

Objectives

The incidence of acute Achilles tendon rupture appears to be increasing. The aim of this study was to summarize various therapies for acute Achilles tendon rupture and discuss their relative merits.

Methods

A PubMed search about the management of acute Achilles tendon rupture was performed. The search was open for original manuscripts and review papers limited to publication from January 2006 to July 2017. A total of 489 papers were identified initially and finally 323 articles were suitable for this review.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1525 - 1532
1 Nov 2015
Cho J Yi Y Ahn TK Choi HJ Park CH Chun DI Lee JS Lee WC

The purpose of this study was to evaluate the change in sagittal tibiotalar alignment after total ankle arthroplasty (TAA) for osteoarthritis and to investigate factors affecting the restoration of alignment.

This retrospective study included 119 patients (120 ankles) who underwent three component TAA using the Hintegra prosthesis. A total of 63 ankles had anterior displacement of the talus before surgery (group A), 49 had alignment in the normal range (group B), and eight had posterior displacement of the talus (group C). Ankles in group A were further sub-divided into those in whom normal alignment was restored following TAA (41 ankles) and those with persistent displacement (22 ankles). Radiographic and clinical results were assessed.

Pre-operatively, the alignment in group A was significantly more varus than that in group B, and the posterior slope of the tibial plafond was greater (p < 0.01 in both cases). The posterior slope of the tibial component was strongly associated with restoration of alignment: ankles in which the alignment was restored had significantly less posterior slope (p < 0.001).

An anteriorly translated talus was restored to a normal position after TAA in most patients. We suggest that surgeons performing TAA using the Hintegra prosthesis should aim to insert the tibial component at close to 90° relative to the axis of the tibia, hence reducing posterior soft-tissue tension and allowing restoration of normal tibiotalar alignment following surgery.

Cite this article: Bone Joint J 2015;97-B:1525–32.


Bone & Joint Research
Vol. 2, Issue 9 | Pages 186 - 192
1 Sep 2013
Boivin GP Platt KM Corbett J Reeves J Hardy AL Elenes EY Charnigo RJ Hunter SA Pearson KJ

Objectives

The goals of this study were: 1) to determine if high-fat diet (HFD) feeding in female mice would negatively impact biomechanical and histologic consequences on the Achilles tendon and quadriceps muscle; and 2) to investigate whether exercise and branched-chain amino acid (BCAA) supplementation would affect these parameters or attenuate any negative consequences resulting from HFD consumption.

Methods

We examined the effects of 16 weeks of 60% HFD feeding, voluntary exercise (free choice wheel running) and BCAA administration in female C57BL/6 mice. The Achilles tendons and quadriceps muscles were removed at the end of the experiment and assessed histologically and biomechanically.