Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and
Bone turnover and the accumulation of microdamage are impacted by the presence of skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. The present study aims to establish a preliminary understanding of microdamage accumulation and
We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower
The extracortical single-button (SB) inlay repair is one of the most preferred distal biceps tendon repair techniques. However, specific complications such as neurovascular injury and non-anatomic repairs have led to the development of techniques that utilize intracortical double-button (DB) fixation. To compare the biomechanical stability of the extracortical SB repair with the anatomical DB repair technique. Controlled laboratory study. The distal biceps tendon was transected in 18 cadaveric elbows from 9 donors. One elbow of each donor was randomly assigned to the extracortical SBor anatomical DB group. Both groups were cyclically loaded with 60N over 1000 cycles between 90° of flexion and full extension. The elbow was then fixed in 90° of flexion and the repair construct loaded to failure. Gap-formation and construct stiffness during cyclic loading, and ultimate
Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate
The absence of menisci in the knee leads to early degenerative changes. Complete radial tears of the meniscus are equivalent to total meniscectomy and repair should be performed if possible. The purpose of this study was to biomechanically compare the cross suture, hashtag and crosstag meniscal repairs using all-inside implants for radial tears. Radial tears were created at the mid-body of 36 fresh-frozen lateral human menisci and then repaired, in randomiSed order, with Fast-Fix™ 360s (Smith & Nephew, Andover, MA) using the cross suture, hashtag and crosstag techniques. The repaired menisci were tested using an Instron Electropuls E10000 (Instron, Norwood, MA). The tests consisted of cyclic loading from 5 to 30N at 1Hz for 500 cycles, then a
Aim. To undertake a biomechanical study to determine the existence of any difference in the early tibial component fixation to bone, between two widely used techniques of cementation, which may confer an influence on implant survival. Method. 20 tibial saw bones were prepared by standard methods using extramedullary instrumentation to receive a fixed bearingtibial component (PFC, DePuy). Under controlled laboratory conditions, thetibial trayswere implanted with CMW cement using either of the two following cementation techniques (10 implants in each group): Full cementation–application of cement to the undersurface of the tibial tray, the keel, the cut surface of the tibia and its stem hole. Surface cementation – application of cement only to the undersurface of thetibial tray and the cut surface of the tibia. 72 hours after implantation, the fixation of the cemented components was assessed by determining the
Aim. The purpose of this study was to develop and test the utility of a hybrid barbed-suture in the core repair of digital flexor tendon injuries. Despite offering advantages over traditional suture methods, concerns over the cost, strength to failure and biocompatibility of barbed sutures have hindered their development. Moreover the recent designs have been very complex. We have attempted to develop and test a simple barbed suture, to assess it's viability in flexor tendon repair and in particular to establish a baseline for the efficacy and modes of failure barbed sutures, in order to help provide a basis for future research. Method. The barbed suture device was constructed by inserting 3 steel barbs into the weaved construct of a braided polyester suture. The barbed sutures were inserted into 28 porcine lateral extensor tendons yielding a single sided core repair. Tensile testing of the repair was undertaken using a tabletop load frame with the distal end of the tendon fixed in a cryo clamp. Linear
Avulsion fractures of the tip of the olecranon are a common traumatic injury. Kirshner-wire fixation (1.6mm) with a figure of eight tension band wire (1.25mm) remains the most popular technique. Hardware removal mat be required in up to 80% of cases. Modern suture materials have very high tensile strength coupled with excellent usability. In this study we compare a repair using 1.6mm k-wires with a 1.25mm surgical steel, against a repair that uses two strands of 2 fibrewire. Twelve Pairs of cadaveric arms were harvested. A standard olecranon osteotomy was performed to mimic an avulsion fracture. In each pair one was fixed using standard technique, 2 × 1.6mm transcortical ?-wire plus figure of 8 loop of 1.25mm wire. The other fixed with the same ?-wires with a tension band suture of 2.0 fibrewire (two loops, one figure of 8 and one simple loop). The triceps tendon was cyclically loaded (10-120 Newtons) to simulate full active motion 2200 cycles. Fracture gap was measured with the ‘Smart Capture’ motion analysis system. The arm was fixed at 90 degrees and triceps tendon was loaded until fixation
Many pre-clinical models of atrophic non-union do not reflect the clinical scenario, some create a critical size defect, or involve cauterization of the tissue which is uncommonly seen in patients. Atrophic non-union is usually developed following high energy trauma leading to periosteal stripping. The most recent reliable model with these aspects involves creating a non-critical gap of 1mm with periosteal and endosteal stripping. However, this method uses an external fixator for fracture fixation, whereas intramedullary nailing is the standard fixation device for long bone fractures. OBJECTIVES. To establish a clinically relevant model of atrophic non-union using intramedullary nail and (1) ex vivo and in vivo validation and characterization of this model, (2) establishing a standardized method for leg positioning for a reliable x-ray imaging. Ex vivo evaluation: 40 rat's cadavers (adult male 5–6 months old), were divided into five groups (n=8 in each): the first group was fixed with 20G intramedullary nail, the second group with 18G nail, the third group with 4-hole plate, the fourth group with 6-hole plate, and the fifth group with an external fixator. Tibiae were harvested by leg disarticulation from the knee and ankle joints. Each group was then subdivided into two subgroups for mechanical testing: one for axial loading (n=4) and one for 4-point bending (n=4) using Zwick/Roell® machine. Statistical analysis was carried out by ANOVA with a fisher post-hoc comparison between groups. A p-value less than 0.05 was considered statistically significant. To maintain the non-critical gap, a spacer was inserted in the gap, the design was refined to minimize the effect on the healing surface area. In vivo evaluation was done to validate and characterize the model. Here, a 1 mm gap was created with periosteal and endosteal stripping to induce non-union. The fracture was then fixed by a hypodermic needle. A proper x-ray technique must show fibula in both views. Therefore, a leg holder was used to hold the knee and ankle joints in 90º flexion and the foot was placed in a perpendicular direction with the x-ray film. Lateral view was taken with the foot parallel to the x-ray film. Ex vivo: axial load stiffness data revealed that intramedullary nails are significantly stronger and stiffer than other devices. Bending
Our aim was to compare the biomechanical strength modified side-to-side repair with modified pulvertaft technique keeping overlap length, anchor points, type of suture, suture throw and amount of suture similar. In our study, we have used turkey tendons. Two investigators performed 34 repairs during one summer month. All mechanical testing was carried out using the tensile load testing machine. Variables measured were maximum load,
Fractures of the anteromedial facet (AO/OTA 21-B1.1, O'Driscoll Type 2, subtype 3) are associated with varus posteromedial rotational instability of the ulnohumeral joint and early post-traumatic arthritis. The purpose of this study was to examine the stability of plate (locking and non-locking) vs screw constructs in the fixation of anteromedial coronoid facet fractures in a sawbone model. An anteromedial coronoid facet fracture (AO/OTA 21-B1.1) was simulated in 24 synthetic ulna bones. They were then assigned into 3 fracture fixation groups: non-locking plate fixation, locking plate fixation, and dual cortical screw fixation. An AO 2.0 mm screw and plate system was used for the plate fixation groups and 2.0 mm cortical screws were used for the screw-only group. Following fixation, each construct was potted in bismuth alloy and secured to a servohydraulic load frame. Each construct was cycled in tension and then in compression at 0.5Hz. For both cycling modalities, an incremental loading pattern was used starting at 40 N and increased by 20 N every 200 cycles up to 200N. Fracture fragment displacement was recorded with an optical tracking system. Following cyclic loading each construct was loaded to failure (displacement >2 mm) at 10mm/min. Tension cycling – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic tension loading protocol (to 200N) with maximum fragment displacement of 12.60um and 14.50um respectively. There was no statistical difference between the plated constructs at any load level. No screw-only fixed construct survived the tension protocol with mean force at failure of 110N (range 60–180N). Compression Testing – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic compression loading protocol (to 200N), while all but one of the screw-only fixation constructs survived. Fracture fragment displacement was significantly greater in the screw-only repair group across all loading levels when compared to the plated constructs. There was no statistically significant difference in fragment motion between the locking and non-locking groups. Failure Testing – The maximum
Aims. The aim of this study was to compare biomechanical properties of pre-contoured plate fixation using different screw fixation modes in a mid-shaft clavicle fracture model. Methods. Fourth generation biomechanical clavicle sawbones with a mid-shaft osteotomy were plated in one of three modes: nonlocking bicortical, locking bicortical and locking unicortical mode. The specimens were then tested to failure in four-point bending and pull-off tests. Results. Failure due to fracture through the sawbone was more common in nonlocking bicortical mode while plate bending was more common in the locking bicortical group. The ultimate
This study was undertaken to assess for equivalence or superiority in tendon reconstruction techniques. This is an in vitro analysis of several, different, reconstruction techniques for chronic Achilles tendon ruptures. The surgical techniques have been borne out of surgical preference rather than biomechanical principles with little published research into their comparability. Surgical preferences are a result of the supposed benefits of reduced operative time, single operative incision and decreased morbidity. An animal model, after human cadaveric tissue dissection to guide the specimen construction, was used to compare the different techniques using bovine bone and tendon and tested using a material testing machine. Ultimate
Subscapularis tenotomy (SST) has been the preferred approach for shoulder arthroplasty for decades but recent controversy has propelled lesser tuberosity osteotomy (LTO) as a potential alternative. Early work by Gerber suggested improved healing and better outcomes with LTO although subscapularis muscular atrophy occurred in this group as well with unknown long-term implications. However, we previously performed a biomechanical study showing that some of the poor results following tenotomy may have been due to historic non-anatomic repair techniques. Surgical technique is critical to allow anatomic healing – this is true of both SST or LTO techniques. A recent meta-analysis of biomechanical cadaveric studies showed that LTO was stronger to SST at “time-zero” with respect to
Softcast is an attractive alternative to POP for unstable forearm fractures, providing a comfortable, water-resistant splint that can be removed without a plaster saw. Unreinforced Softcast has, however, only been recommended for buckle fractures. A laboratory study was undertaken to compare standardised POP, Softcast and reinforced Softcast splints at clinically relevant endpoints. The
Cadaveric specimens that have been fresh-frozen and then thawed for use have historically been considered to be the gold standard for biomechanical studies and the closest surrogate to living tissue. However, there are notable issues related to specimen rapid decay in the thawed state as well as infectious hazard to those handling the specimens. Cadaveric specimen preparation using a new phenol-based soft-embalmed method has shown considerable promise in preserving tissue in a prolonged fresh-like state while mitigating the infection risk. In this study, we evaluated the ability of soft-embalmed specimens to replace fresh-frozen specimens in the biomechanical study of flexor tendon repair. An ex-vivo study was conducted on six cadaveric hands in both a fresh-frozen, thawed state and following embalming with a phenol-based solution. Six different combinations of flexor digitorum profundus (FDP) tendons, from D2 to D5, and flexor pollicis longus (FPL) tendons were used to create two groups of similar composition with 15 tendons each, one group to be tested fresh and the other following embalming. A 5cm length of each flexor tendon was harvested from zone 2 and transversely cut at the mid-section. A modified-Kessler repair was performed on each specimen using 4–0 Fiberwire, with two core sutures and 1cm purchase on each end. Incisions were closed with a running stitch to prepare the specimen for embalming. The same protocol was used to repair and harvest the second group of tendons one month following the perfusion of a phenol-based solution through the vasculature of the hand and forearm. Tendon repair biomechanics were characterised through a ramp
Introduction:. In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional polished tapered Exeter stem. Method:. A total of forty-two stems, twenty-one short stems and twenty-one conventional stems both with three different offsets were cemented in a composite sawbone model and loaded to fracture. Results:. study showed that femurs will break at a significantly lower
Background. Currently, stailess steel, titanium and carbon-fiber reinforced polyetheretherketone (CF-PEEK) plates are available for the treatment of distal radius fractures. Since the possibility to create a less rigid fixation may represent an advantage in case of ostheoporotic or poor quality bone, the aim of this study is to compare the biomechanical properties of these three materials in terms of bending stiffness with a single static load and after cyclical loading, simulating physiologic wrist motion. Materials and Methods. Three volar plating systems with fixed angle were tested: Zimmer stainless steel volar lateral column (Warsaw, IN); Hand Innovations titanium DVR (Miami, FL); Lima Corporate CF-PEEK DiPHOS-RM (San Daniele Del Friuli, Udine, Italy). For each type of plate tested four right synthetic composite bone radii were used. An unstable, extraarticular fracture was simulated by making an 8 mm gap with a saw starting 12 mm proximal to the articular surface of the radius on the distal radio-ulnar joint side. The osteotomies were made perpendicular to the long axis of the bone to allow for a consistent fracture gap on the dorsal and volar sides of the radius. Plates were implanted using all the distal and proximal fixation holes [Fig. 1]. Each synthetic radius model was potted in methylmethacrylate and tested in a bi-axial servo-hydraulic test frame (MTS Minibionix 858, universal testing machine) for
Introduction. Bisphosphonates are among the most commonly prescribed drugs in Osteoporotic Patients. Their mode of action is anti-resorptive. Since remodeling is a key step in fracture healing, there has been concern regarding the effect of bisphosphonates on fracture healing. Objectives. To assess the effect of alendronate on fracture healing in the rabbit ulna osteotomy model. Materials and methods. 16 New Zealand white rabbits were divided into 2 equal groups. Bilateral ulnar osteotomies were performed in the first week. Group 1 was the control group and group 2 was gavaged with alendronate solution (human equivalent dose). 2 rabbits were euthanised at 3 and 6 weeks and the remaining 4 rabbits were euthanised at 8 weeks. Fracture healing was assessed radiologically, with mechanical testing using the Instron 4302 materials testing machine and histologically, in that order. Results. The fractures healed satisfactorily in all the control group animals. However, in the alendronate treated group, there was an abundance of woven bone and little lamellar bone in the callus. However there was no significant difference in mechanical testing. In addition we did not find any evidence of Osteonecrosis in the Bisphosphonate treated group. Conclusion. Bone remodelling in the alendronate treated group is slower but a larger amount of bone callus is formed around the fracture, thus giving the fracture callus a higher ultimate