Advertisement for orthosearch.org.uk
Results 1 - 20 of 353
Results per page:
Bone & Joint Research
Vol. 1, Issue 6 | Pages 118 - 124
1 Jun 2012
Grawe B Le T Williamson S Archdeacon A Zardiackas L

Objectives. We aimed to further evaluate the biomechanical characteristics of two locking screws versus three standard bicortical screws in synthetic models of normal and osteoporotic bone. Methods. Synthetic tubular bone models representing normal bone density and osteoporotic bone density were used. Artificial fracture gaps of 1 cm were created in each specimen before fixation with one of two constructs: 1) two locking screws using a five-hole locking compression plate (LCP) plate; or 2) three non-locking screws with a seven-hole LCP plate across each side of the fracture gap. The stiffness, maximum displacement, mode of failure and number of cycles to failure were recorded under progressive cyclic torsional and eccentric axial loading. Results. Locking plates in normal bone survived 10% fewer cycles to failure during cyclic axial loading, but there was no significant difference in maximum displacement or failure load. Locking plates in osteoporotic bone showed less displacement (p = 0.02), but no significant difference in number of cycles to failure or failure load during cyclic axial loading (p = 0.46 and p = 0.25, respectively). Locking plates in normal bone had lower stiffness and torque during torsion testing (both p = 0.03), but there was no significant difference in rotation (angular displacement) (p = 0.84). Locking plates in osteoporotic bone showed lower torque and rotation (p = 0.008), but there was no significant difference in stiffness during torsion testing (p = 0.69). Conclusions. The mechanical performance of locking plate constructs, using only two screws, is comparable to three non-locking screw constructs in osteoporotic bone. Normal bone loaded with either an axial or torsional moment showed slightly better performance with the non-locking construct


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1495 - 1497
1 Nov 2007
Jones BG Mehin R Young D

Intramedullary tibial nailing was performed in ten paired cadavers and the insertion of a medial-to-lateral proximal oblique locking screw was simulated in each specimen. Anatomical dissection was undertaken to determine the relationship of the common peroneal nerve to the cross-screw. The common peroneal nerve was contacted directly in four tibiae and the cross-screw was a mean of 2.6 mm (1.0 to 10.7) away from the nerve in the remaining 16. Iatrogenic injury to the common peroneal nerve by medial-to-lateral proximal oblique locking screws is therefore a significant risk during tibial nailing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 120 - 120
1 Sep 2012
Burke N Kennedy J Fitzpatrick D Mullett H
Full Access

Purpose. Locking plates are widely used in clinical practice for the surgical treatment of complex proximal humerus fractures, especially in osteoporotic bone. The aim of this study is to assess the biomechanical influence of the infero-medial locking screws on maintaining reduction of the fragments in a proximal humerus fracture. Materials & Methods. A standard 3-part proximal humerus fracture was created in fourth generation humerus saw bones. Each specimen was anatomically reduced and secured with a PHILOS locking plate. Eleven of the specimens had infero-medial locking screws inserted, and 11 specimens did not. Each humerus sawbone underwent cyclical loading at 532N, as previous studies showed this was the maximum force at the glenohumeral joint. The absolute inter-fragmentary motion was recorded using an infra-red motion analysis device. Each specimen was then loaded to failure. Results. The fixation of a 3-part proximal humerus fracture with the insertion of the infero-medial locking screws had significantly less inter-fragmentary motion at 250, 500, 750 and 1000 cycles, when compared to a similar fracture pattern without this strategically placed screw (P< 0.001). In both groups at each 250 cycle increment there was a significant increase in the overall fracture fragment movement (P< 0.01). The load to failure in the group with the infero-medial screws was also significantly more (P< 0.001). The median load of 1159N was required for construct failure compared to 1452N in the group without the inferomedial screws. Conclusion. This study supports the importance of anatomical reduction and adequate support of the medial column on maintaining fracture reduction of proximal humerus fractures. The key placement of the infero-medial locking screws is of significant importance in creating a solid construct for proximal humerus fracture healing. This may reduce implant complications such as screw perforations or the possible loss of reduction of fracture fragments


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1485 - 1492
1 Dec 2024
Terek RM

Aims. The aim of the LightFix Trial was to evaluate the clinical outcomes for one year after the treatment of impending and completed pathological fractures of the humerus using the IlluminOss System (IS), and to analyze the performance of this device. Methods. A total of 81 patients with an impending or completed pathological fracture were enrolled in a multicentre, open label single cohort study and treated with IS. Inclusion criteria were visual analogue scale (VAS) Pain Scores > 60 mm/100 mm and Mirels’ Score ≥ 8. VAS pain, Musculoskeletal Tumor Society (MSTS) Upper Limb Function, and The European Organization for Research and Treatment of Cancer QoL Group Bone Metastases Module (QLQ-BM22) scores were all normalized to 100, and radiographs were obtained at baseline and at 14, 30, 90, 180, and 360 days postoperatively. Results. The mean VAS pain score decreased significantly from 84 (SD 15) to 50 (SD 29), 38 (SD 30), 31 (SD 29), 31 (SD 29), and 21 (SD 23) between the baseline and follow-up times (p < 0.001). The mean MSTS function scores significantly increased from 27 (SD 19) to 52 (SD 22), 60 (23), 67 (SD 23), 72 (SD 26), and 83 (SD 14) (p < 0.001). The pain and functional subscales of the QLQ-BM22 also significantly improved at most times. A total of 12 devices broke, giving an unadjusted device fracture rate of 15%. Conclusion. Stabilization with the IS decreased pain and improved function with consistent results during the first postoperative year. IS is a new, minimally invasive type of internal fixation. The use of the IS alone may be better for impending rather than completed pathological fractures, and may be better in completed fractures if an added plate or more than the usual number of locking screws is required. Caution is warranted regarding its use alone in patients with a completed pathological fracture due to the rate of breakage of the device. Cite this article: Bone Joint J 2024;106-B(12):1485–1492


Bone & Joint Research
Vol. 13, Issue 3 | Pages 124 - 126
11 Mar 2024
Shen J Wei Z Sun D Wu H Wang X Wang S Luo F Xie Z

Cite this article: Bone Joint Res 2024;13(3):124–126.


Bone & Joint 360
Vol. 11, Issue 1 | Pages 38 - 41
1 Feb 2022


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 39 - 39
23 Feb 2023
Jo O Almond M Rupasinghe H Jo O Ackland D Ernstbrunner L Ek E
Full Access

Neer Type-IIB lateral clavicle fractures are inherently unstable fractures with associated disruption of the coracoclavicular (CC) ligaments. A novel plating technique using a superior lateral locking plate with antero-posterior (AP) locking screws, resulting in orthogonal fixation in the lateral fragment has been designed to enhance stability. The purpose of this study was to biomechanically compare three different clavicle plating constructs. 24 fresh-frozen cadaveric shoulders were randomised into three groups (n=8 specimens). Group 1: lateral locking plate only (Medartis Aptus Superior Lateral Plate); Group 2: lateral locking plate with CC stabilisation (Nr. 2 FiberWire); and Group 3: lateral locking plate with two AP locking screws stabilising the lateral fragment. Data was analysed for gap formation after cyclic loading, construct stiffness and ultimate load to failure, defined by a marked decrease in the load displacement curve. After 500 cycles, there was no statistically significant difference between the three groups in gap-formation (p = 0.179). Ultimate load to failure was significantly higher in Group 3 compared to Group 1 (286N vs. 167N; p = 0.022), but not to Group 2 (286N vs. 246N; p = 0.604). There were no statistically significant differences in stiffness (Group 1: 504N/mm; Group 2: 564N/mm; Group 3: 512N/mm; p = 0.712). Peri-implant fracture was the primary mode of failure for all three groups, with Group 3 demonstrating the lowest rate of peri-implant fractures (Group 1: 6/8; Group 2: 7/8, Group 3: 4/8; p = 0.243). The lateral locking plate with orthogonal AP locking screw fixation in the lateral fragment demonstrated the greatest ultimate failure load, followed by the lateral locking plate with CC stabilization. The use of orthogonal screw fixation in the distal fragment may negate against the need for CC stabilization in these types of fractures, thus minimizing surgical dissection around the coracoid and potential complications


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 93 - 93
1 Apr 2017
Karaaslan A Karakaşlı A Ertem F Aycan H
Full Access

Background. Intramedullary nailing is a widely accepted treatment method for femoral fractures. Failure of locking screws is often a threatening complication, particularly on comminuted fractures. For comminuted fractures, the locking nails are load-bearing devices. The load transfer between fractured fragments is made through especially the locking screws for these load bearing situations. Nonunion, malunion, delayed union, shortening, and nail migration are the expected results if early failure of locking screws is present with comminuted fractures. In this study our aim was to compare the bending resistance of titanium and stainless steel locking screws. Methods. We tested 60 locking screws in six groups (titanium, stainless steel, unthreaded, low threaded and high threaded) in a steel tube that has 30 mm inner diameter, which imitates the lesser trochanter level. We determined the yield points at three-point bending tests that permanent deformation started in the locking screws using an axial compression testing machine. Results. The three-point bending resistance of 5 mm low threaded titanium locking screws (bending at 1413 N loading) was 46.5 % less than the three-point bending resistance of 5 mm low threaded stainless steel locking screws (bending at 2171 N loading) (p < 0.001). Five mm stainless steel locking screws are 29–57 % more resistant to three-point bending deformation than titanium ones. Conclusions. Therefore, stainless steel locking screws instead of titanium ones must be preferred in comminuted femur shaft fractures. In intramedullary nailing of comminuted or long oblique femur fractures, a locking screw should be 5 mm low threaded or unthreaded stainless steel or 5 mm unthreadedtitanium. Five mm high threaded titanium or stainless steel screws must not ever be used as a locking screw. Level of Evidence. 5. Disclosure. Authors declare that there is no conflict of interest related to the present study


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2021
Zderic I Caspar J Blauth M Weber A Koch R Stoffel K Finkemeier C Hessmann M Gueorguiev B
Full Access

Introduction and Objective. Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter. The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading. Materials and Methods. The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking. Results. Initial nail toggling of the distal tibia fragment in group 5 was significantly lower as compared with group 3 in varus (p=0.04) or with groups 2 and 4 in flexion (p≤0.02). In addition, the toggling in varus was significantly lower in group 1 versus group 4 (p<0.01). Moreover, during dynamic loading, within the course of the first 10,000 cycles the movements of the distal fragment in terms of varus, flexion, internal rotation, as well as axial and shear displacements at the fracture site, were all significantly lower in group 5 compared with group 4 (p<0.01). Additionally, group 5 demonstrated significantly lower values for flexion versus groups 2 and 3 (p≤0.04), for internal rotation versus group 1 (p=0.03), and for axial displacement versus group 3 (p=0.03). A trend to significantly lower values was detected in group 5 versus group 1 for varus, flexion and shear displacement – with p ranging between 0.05 and 0.07 – and versus group 3 for shear displacement (p=0.07). Cycles to failure were highest in group 5 with a significant difference to group 4 (p<0.01). Conclusions. From a biomechanical perspective, the novel angular stable intramedullary nail concept with integrated PEEK inlays and low-profile screws provides ameliorated resistance against nail toggling and loss of reduction under static and dynamic loading compared with other commercially available intramedullary nails used for fixation of unstable distal tibia fractures


Aims. There are concerns regarding nail/medullary canal mismatch and initial stability after cephalomedullary nailing in unstable pertrochanteric fractures. This study aimed to investigate the effect of an additional anteroposterior blocking screw on fixation stability in unstable pertrochanteric fracture models with a nail/medullary canal mismatch after short cephalomedullary nail (CMN) fixation. Methods. Eight finite element models (FEMs), comprising four different femoral diameters, with and without blocking screws, were constructed, and unstable intertrochanteric fractures fixed with short CMNs were reproduced in all FEMs. Micromotions of distal shaft fragment related to proximal fragment, and stress concentrations at the nail construct were measured. Results. Micromotions in FEMs without a blocking screw significantly increased as nail/medullary canal mismatch increased, but were similar between FEMs with a blocking screw regardless of mismatch. Stress concentration at the nail construct was observed at the junction of the nail body and lag screw in all FEMs, and increased as nail/medullary canal mismatch increased, regardless of blocking screws. Mean stresses over regions of interest in FEMs with a blocking screw were much lower than regions of interest in those without. Mean stresses in FEMs with a blocking screw were lower than the yield strength, yet mean stresses in FEMs without blocking screws having 8 mm and 10 mm mismatch exceeded the yield strength. All mean stresses at distal locking screws were less than the yield strength. Conclusion. Using an additional anteroposterior blocking screw may be a simple and effective method to enhance fixation stability in unstable pertrochanteric fractures with a large nail/medullary canal mismatch due to osteoporosis. Cite this article: Bone Joint Res 2022;11(3):152–161


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1107 - 1112
1 Aug 2012
Bugler KE Watson CD Hardie AR Appleton P McQueen MM Court-Brown CM White TO

Techniques for fixation of fractures of the lateral malleolus have remained essentially unchanged since the 1960s, but are associated with complication rates of up to 30%. The fibular nail is an alternative method of fixation requiring a minimal incision and tissue dissection, and has the potential to reduce the incidence of complications. We reviewed the results of 105 patients with unstable fractures of the ankle that were fixed between 2002 and 2010 using the Acumed fibular nail. The mean age of the patients was 64.8 years (22 to 95), and 80 (76%) had significant systemic medical comorbidities. Various different configurations of locking screw were assessed over the study period as experience was gained with the device. Nailing without the use of locking screws gave satisfactory stability in only 66% of cases (4 of 6). Initial locking screw constructs rendered between 91% (10 of 11) and 96% (23 of 24) of ankles stable. Overall, seven patients had loss of fixation of the fracture and there were five post-operative wound infections related to the distal fibula. This lead to the development of the current technique with a screw across the syndesmosis in addition to a distal locking screw. In 21 patients treated with this technique there have been no significant complications and only one superficial wound infection. Good fracture reduction was achieved in all of these patients. The mean physical component Short-Form 12, Olerud and Molander score, and American Academy of Orthopaedic Surgeons Foot and Ankle outcome scores at a mean of six years post-injury were 46 (28 to 61), 65 (35 to 100) and 83 (52 to 99), respectively. There have been no cases of fibular nonunion. Nailing of the fibula using our current technique gives good radiological and functional outcomes with minimal complications, and should be considered in the management of patients with an unstable ankle fracture.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 144 - 144
1 Apr 2019
Prasad KSRK Kumar R Sharma A Karras K
Full Access

Background. Stress fractures at tracker after computer navigated total knee replacement are rare. Periprosthetic fracture after Minimally Invasive Plate Osteosynthesis (MIPO) of stress fracture through femoral tracker is unique in orthopaedic literature. We are reporting this unique presentation of periprosthetic fractures after MIPO for stress fracture involving femoral pin site track in computer assisted total knee arthroplasty, treated by reconstruction nail (PFNA). Methods. A 75-year old female, who had computer navigated right total knee replacement, was admitted 6 weeks later with increasing pain over distal thigh for 3 weeks without trauma. Prior to onset of pain, she achieved a range of movements of 0–105 degrees. Perioperative radiographs did not suggest obvious osteoporosis, pre-existent benign or malignant lesion, or fracture. Radiographs demonstrated transverse fracture of distal third of femur through pin site track. We fixed the fracture with 11-hole combihole locking plate by MIPO technique. Eight weeks later, she was readmitted with periprosthetic fracture through screw hole at the tip of MIPO Plate and treated by Reconstruction Nail (PFNA), removal of locking screws and refixation of intermediate segment with unicortical locking screws. Then she was protected with plaster cylinder for 4 weeks and hinged brace for 2 months. Results. Retrograde nail for navigation pin site stress fracture entails intraarticular approach with attendant risks including scatches to prosthesis and joint infection. So we opted to fix by MIPO technique. Periprosthetic fracture at the top of MIPO merits fixation with antegrade nail in conjunction with conversion of screws in the proximal part of the plate to unicortical locking screws. Overlap of at least 3cms offers biomechanical superiority. She made an uneventful recovery and was started on osteoporosis treatment, pending DEXA scan. Conclusion. Reconstruction Nail (PFNA), refixation of intermediate segment with unicortical locking screws constitutes a logical management option for the unique periprosthetic fracture after MIPO of stress fracture involving femoral pin site track in computer assisted total knee replacement


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1385 - 1391
1 Oct 2018
Qvist AH Væsel MT Jensen CM Jensen SL

Aims. Recent studies of nonoperatively treated displaced midshaft clavicular fractures have shown a high incidence of nonunion and unsatisfactory functional outcome. Some studies have shown superior functional results and higher rates of healing following operative treatment. The aim of this study was to compare the outcome in these patients after nonoperative management with those treated with fixation. Patients and Methods. In a multicentre, parallel randomized controlled trial, 146 adult patients with an acute displaced fracture of the midthird of the clavicle were randomized to either nonoperative treatment with a sling (71, 55 men and 16 women with a mean age of 39 years, 18 to 60) or fixation with a pre-contoured plate and locking screws (75, 64 men and 11 women with a mean age of 40 years, 18 to 60). Outcome was assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) Score, the Constant Score, and radiographical evidence of union. Patients were followed for one year. Results. A total of 60 patients in the nonoperative group and 64 in the operative group completed one-year follow-up. At three months’ follow-up, both the median DASH (1.7 vs 8.3) and median Constant scores (97 vs 90) were significantly better in the operated group (both p = 0.02). After six months and one year, there was no difference in the median DASH or Constant scores. The rate of nonunion was lower in the operative group (2 vs 11 patients, p < 0.02). Nine patients in the nonoperative group underwent surgery for nonunion. The plate was subsequently removed in 16 patients (25%). One patient had a new fracture after removal of the plate and one underwent revision surgery for failure of fixation. Conclusion. Fixation of a displaced midshaft clavicular fracture using a pre-contoured plate and locking screws results in faster functional recovery and a higher rate of union compared with nonoperative management, but the function of the shoulder is equal after six months and at one year. Cite this article: Bone Joint J 2018;100-B:1385–91


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 41 - 41
1 Feb 2020
Studders C Saliken D Shirzadi H Athwal G Giles J
Full Access

INTRODUCTION. Reverse shoulder arthroplasty (RSA) provides an effective alternative to anatomic shoulder replacements for individuals with cuff tear arthropathy, but certain osteoarthritic glenoid deformities make it challenging to achieve sufficient long term fixation. To compensate for bone loss, increase available bone stock, and lateralize the glenohumeral joint center of rotation, bony increased offset RSA (BIO-RSA) uses a cancellous autograft for baseplate augmentation that is harvested prior to humeral head resection. The motivations for this computational study are twofold: finite element (FE) studies of BIO-RSA are absent from the literature, and guidance in the literature on screw orientations that achieve optimal fixation varies. This study computationally evaluates how screw configuration affects BIO-RSA graft micromotion relative to the implant baseplate and glenoid. METHODS. A senior shoulder specialist (GSA) selected a scapula with a Walch Type B2 deformity from patient CT scans. DICOM images were converted to a 3D model, which underwent simulated BIO-RSA with three screw configurations: 2 divergent superior & inferior locking screws with 2 convergent anterior & posterior compression screws (SILS); 2 convergent anterior & posterior locking screws and 2 superior & inferior compression screws parallel to the baseplate central peg (APLS); and 2 divergent superior & inferior locking screws and 2 divergent anterior & posterior compression screws (AD). The scapula was assigned heterogeneous bone material properties based on the DICOM images’ Hounsfield unit (HU) values, and other components were assigned homogenous properties. Models were then imported into an FE program for analysis. Anterior-posterior and superior-inferior point loads and a lateral-medial distributed load simulated physiologic loading. Micromotion data between the RSA baseplate and bone graft as well as between the bone graft and glenoid were sub-divided into four quadrants. RESULTS. In all but 1 quadrant, APLS performed the worst with the graft having an average micromotion of 347.1µm & 355.9 µm relative to the glenoid and baseplate, respectively. The SILS configuration ranked second, having 211.2 µm & 274.4 µm relative to the glenoid and baseplate. AD performed best, allowing 247.4 µm & 225.4 µm of graft micromotion relative to the glenoid and baseplate. DISCUSSION. Both APLS and SILS techniques are described in the literature for BIO-RSA fixation; however, the data indicate that AD is superior in its ability to reduce graft micromotion, and thus some revision to common practices may be necessary. While these micromotion data are larger than data in the extant RSA literature, there are several factors that account for this. First, to properly model the difference between locking and compression screws, we simulated friction between the compression screw heads and baseplate rather than a tied constraint as done in other studies, resulting in larger micromotion. Second, the trabecular bone graft is at greater risk of deforming than metallic spacers used when studying micromotion with glenosphere lateralization, increasing graft deflection magnitude. Future work will investigate the effects of various BIO-RSA variables. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 58 - 58
10 Feb 2023
Ramage D Burgess A Powell A Tangrood Z
Full Access

Ankle fractures represent the third most common fragility fracture seen in elderly patients following hip and distal radius fractures. Non-operative management of these see complication rates as high as 70%. Open reduction and internal fixation (ORIF) has complication rates of up to 40%. With either option, patients tend to be managed with a non-weight bearing period of six weeks or longer. An alternative is the use of a tibiotalocalcaneal (TTC) nail. This provides a percutaneous treatment that enables the patient to mobilise immediately. This case-series explores the efficacy of this device in a broad population, including the highly comorbid and cognitively impaired. We reviewed patients treated with TTC nail for acute ankle fractures between 2019 and 2022. Baseline and surgical data were collected. Clinical records were reviewed to record any post-operative complication, and post-operative mobility status and domicile. 24 patients had their ankle fracture managed with TTC nailing. No intra-operative complications were noted. There were six (27%) post-operative complications; four patients had loosening of a distal locking screw, one significant wound infection necessitating exchange of nail, and one pressure area from an underlying displaced fracture fragment. All except three patients returned to their previous domicile. Just over two thirds of patients returned to their baseline level of mobility. This case-series is one of the largest and is also one of the first to include cognitively impaired patients. Our results are consistent with other case-series with a favourable complication rate when compared with ORIF in similar patient groups. The use of a TTC nail in the context of acute, geriatric ankle trauma is a simple and effective treatment modality. This series shows acceptable complication rates and the majority of patients are able to return to their baseline level of mobility and domicile


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 30 - 30
1 Jun 2023
Tissingh E Goodier D Wright J Timms A Campbell M Crook G Calder P
Full Access

Introduction. The FitBone lengthening nail (Orthofix UK) is an intramedullary device licensed for the lengthening of long bones in adults in the UK. It contains a motor powered by electricity transmitted via an induction coil placed underneath the skin. It was developed in Germany two decades ago but uptake in the UK has only started more recently. The aim of this study was to review the first cohort of FitBone lengthening nails in a unit with significant experience of other lengthening nails (including PRECICE and Stryde). Materials & Methods. Demographic, clinical and radiological data was prospectively collected on all FitBone cases starting in February 2022. Accuracy of lengthening rate, patient satisfaction and implant issues were all considered. Complications and learning points were recorded and discussed by the multidisciplinary team involved in the patients care. Results. Eleven lengthening nails were inserted between February and November 2022 (6 right femurs, 5 left femurs). The average patient age was 31 (16–57) with 4 females and 7 males. The average lengthening achieved was 44mm (13– 70) over an average of 59 days (35 to 104). Significant technical issues were encountered in this cohort of patients including slow opening up at osteotomy site (3 requiring speeding up of programme), early consolidation (one requiring re-do osteotomy) and backing out of locking screws (3 out of 11 nails). There were also patient use concerns with difficulty using the motor and the inability to reverse the lengthening without an additional component to the motor. Conclusions. We present the first UK cohort of patients with femoral lengthening using the FitBone implant and device. We highlight the technical and patient issues encountered during this learning curve and propose solutions to avoid these pitfalls


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 107 - 107
23 Feb 2023
Lee W Kiang W Chen Y Yeoh C Teo W Tang Z
Full Access

The Femoral Neck System (FNS) was introduced as an alternative device for the fixation of neck of femur fractures (NOFFs). The purported advantages include superior angular and rotatory stability compared to multiple cancellous screws, via a minimally invasive instrumentation that is simpler than conventional fixed angle devices. There were limited clinical studies regarding the utility of this device. We aimed to study the outcomes of NOFFs fixed with the FNS. This was a single-institution, retrospective review of all undisplaced elderly (≥60 years old) undisplaced young, and displaced young NOFFs fixed with the FNS. Demographics, surgical parameters, radiographic parameters, and clinical outcomes including complications were reviewed. Thirty-six subjects with a median age of 75 [44,89] years old, had NOFF fixation using the FNS. Thirty-one (86.1%) had undisplaced fractures. There were 6 (16.7%), 26 (72.2%), and 4 (11.1%) subjects with Pauwels types 1, 2, and 3 respectively. Thirty-two (88.9%) had posterior tilt of <20º. The mean duration of surgery was 71±18 minutes. Excluding 4 patients whom required revision surgery, 2 patients whom demised, and 10 patients whom defaulted reviews, the mean follow-up duration was 55±13 weeks. Four complications were recorded, namely implant cut out at the femoral head at week 8, breaking of the locking screw at the run-off region at week 22, avascular necrosis at week 25, and a refracture following near fall, causing the fracture to fail in varus at week 7 postoperation. While reasonably fast to instrument, failures still occur and it is likely multifactorial. However, the rate of reoperation is lower than what has been reported for NOFFs fixed with the a fixed-angle device or 3 cancellous screws. In conclusion, the FNS is a reasonably safe instrument to use. Surgeons’ discretion is still needed in patient selection, keeping in mind the need for satisfactory radiological parameters


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm. 3. ) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 98 - 98
4 Apr 2023
Lu V Tennyson M Zhang J Zhou A Thahir A Krkovic M
Full Access

Fragility ankles fractures in the geriatric population are challenging to manage, due to fracture instability, soft tissue compromise, patient co-morbidities. Traditional management options include open reduction internal fixation, or conservative treatment, both of which are fraught with high complication rates. We aimed to present functional outcomes of elderly patients with fragility ankle fractures treated with tibiotalocalcaneal nails. 171 patients received a tibiotalocalcaneal nail over a six-year period, but only twenty met the inclusion criteria of being over sixty and having poor bone stock, verified by radiological evidence of osteopenia or history of fragility fractures. Primary outcome was mortality risk from co-morbidities, according to the Charlson co-morbidity index (CCI), and patients’ post-operative mobility status compared to pre-operative mobility. Secondary outcomes include intra-operative and post-operative complications, six-month mortality rate, time to mobilisation and union. The mean age was 77.82 years old, five of whom are type 2 diabetics. The average CCI was 5.05. Thirteen patients returned to their pre-operative mobility state. Patients with low CCI are more likely to return to pre-operative mobility status (p=0.16; OR=4.00). Average time to bone union and mobilisation were 92.5 days and 7.63 days, respectively. Mean post-operative AOFAS ankle-hindfoot and Olerud-Molander scores were 53.0 (range 17-88) and 50.9 (range 20-85), respectively. There were four cases of broken distal locking screws, and four cases of superficial infection. Patients with high CCI were more likely to acquire superficial infections (p=0.264, OR=3.857). There were no deep infections, periprosthetic fractures, nail breakages, non-unions. TTC nailing is an effective treatment methodology for low-demand geriatric patients with fragility ankle fractures. This technique leads to low complication rates and early mobilisation. It is not a life-changing procedure, with many able to return to their pre-operative mobility status, which is important for preventing the loss of socioeconomic independence