Advertisement for orthosearch.org.uk
Results 1 - 20 of 176
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 116 - 116
1 Feb 2020
Knapp P Weishuhn L Pizzimenti N Markel D
Full Access

Introduction. Total knee arthroplasty is very successful although the clinical assessment and rated outcome does not always match the patients reported satisfaction. One reason for patient dissatisfaction is less than desired range of motion. Poor postoperative motion inhibits many functional activities and may create a perception of dysfunction. Early in the postoperative period when patients are having trouble regaining motion (usually 6–8 weeks), manipulation under anesthesia can be used to advance range of motion by manually lysing adhesions. Comorbidities have been used as predictors for outcome in total knee arthroplasty in population health studies. Likewise, predicting which patients are most susceptible to early postoperative stiffness/manipulation would be valuable for patient education and to predict outcome. Methods. Prospectively collected data was retrieved from the hospital's MARCQI database (Michigan Arthroplasty Collaborative Quality Initiative) for the years 2014–2018. There were 3098 primary total knees performed during the study period and 139 manipulations (4.44%). The registry specifically abstracts patients’ preoperative comorbidities, operative data, and 90-day postoperative complications. Results. There were 2118 Cruciate Retaining/Cruciate Stabilized knees (105 MUA), 801 Posterior Stabilized (33), and 41 Total Stabilized/Hinge (1), 2160 knees were cemented (91) and 799 uncemented (48). No differences were found between the manipulation and non-manipulation groups for gender, race, alcohol consumption, bleeding disorders, history of DVT or PE, Diabetes, or use of pre-op narcotics or anti-coagulents. Patients undergoing manipulation were younger (67.2 vs. 63.8, p= 0.00001), had a lower BMI (32.6 vs. 30.9 p= 0.0007), and were more likely to be non or former (quit) smokers. There were no differences noted for the constraint of the component (cr/ps), or whether the implants were cemented or uncemented (35% vs. 27%, p= 0.064). Conclusions. Understanding the risk for postoperative stiffness and the potential for manipulation is helpful in the preoperative period for patient education and outcome prediction. Assessing comorbidities and patient characteristics may help avoid the need for manipulations postoperatively. This patient cohort may be biased since the manipulations were not based on predetermined criteria. The cohort represents patients whose range of motion was poor enough to cause the surgeon to perform the procedure. The findings do however highlight a patient pool that was surprisingly at risk: younger, thinner, nonsmokers regardless the implant design or use of cement


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 59 - 59
23 Feb 2023
Rahardja R Mehmood A Coleman B Munro J Young S
Full Access

The optimal timing of when to perform manipulation under anesthesia (MUA) for stiffness following total knee arthroplasty (TKA) is unclear. This study aimed to identify the risk factors for MUA following primary TKA and whether performing an “early” MUA within 3 months results in a greater improvement in range of motion. Primary TKAs performed between January 2013 and December 2018 at three tertiary New Zealand hospitals were reviewed. International Classification of Diseases discharge coding was used to identify patients who underwent an MUA. Multivariate Cox regression was performed to identify patient and surgical risk factors for MUA. Pre- and post-MUA knee flexion angles were identified through manual review of operation notes. Multivariate linear regression was performed to compare the mean flexion angles pre- and post-MUA, as well as the mean gain in flexion, between patients undergoing “early” (<3 months) versus “late” MUA (>3 months). 7386 primary TKAs were analyzed in which 131 underwent subsequent MUA (1.8%). Patients aged <65 years were two times more likely to undergo MUA compared to patients aged ≥65 years (2.5% versus 1.3%, adjusted hazard ratio = 2.1, p<0.001). Gender, body mass index, patient comorbidities or a history of cancer were not associated with the risk of MUA. There was no difference in the final post-MUA flexion angle between patients who underwent early versus late MUA (104.7 versus 104.1 degrees, p = 0.819). However, patients who underwent early MUA had poorer pre-MUA flexion (72.3 versus 79.6 degrees, p = 0.012), and subsequently had a greater overall gain in flexion compared to patients who underwent late MUA (mean gain 33.1 versus 24.3 degrees, p<0.001). Younger age was the only patient risk factor for MUA. A greater overall gain in flexion was achieved in patients who underwent early MUA within 3 months


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 35 - 35
1 Feb 2012
Sivardeen Z Paniker J Drew S Learmonth D Massoud S
Full Access

Background. Frozen Shoulder is a common condition which causes significant morbidity in people of working age. The 2 most popular forms of surgical treatment for this condition are Manipulation under Anaesthesia (MUA) or MUA plus Arthroscopic Capsular Release (ACR). Both treatment modalities are known to give good results, but no-one has compared the two to see which is better. Aim. To compare the outcome in patients with primary frozen shoulder, who are treated by either MUA or MUA plus ACR. Methods. 56 patients with primary frozen shoulder were treated by either MUA or MUA plus ACR. Each patient had their American Shoulder and Elbow Score (ASES), and their Oxford Shoulder Score (OSS) measured pre- and post-operatively. Results. The patients who had MUA plus ACR had a mean ASES of 19.6 pre-operatively, 78.3 at 6 months, and a mean of 80.1 at 12 months. The mean OSS was 32.5 pre-operatively, 53.6 at 6 months and 53.8 at 12 months. The patients who had a MUA had a mean ASES of 28.7 pre-operatively, 57.9 at 6 months and 58 at 12 months. The mean OSS was 33 pre-operatively, 42.5 at 6 months and 48 at 12 months. Conclusions. Both treatments give good results; MUA plus ACR give significantly superior results at 6 to 12 months post-operatively. However, there is no significant difference beyond 12 months


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 72 - 72
1 Sep 2012
Cohen D Cartwright-Terry M Pope J Davidson J Santini A
Full Access

Purpose. To review the outcomes of patients undergoing manipulation under anaesthetic (MUA) after primary total knee arthroplasty (TKA) and predict those that may require such a procedure. Methods. Prospective analysis of patients who required MUA post TKA performed by two surgeons using the same prosthesis from 2003 to 2008. Compared to a control group of primary TKA matched for age, gender and surgeon. All patients in both groups had pre- and post-operative measurements of range of movement. Risk factors were identified including warfarin and statin use, diabetes and body mass index. Results. Seventy-two patients required an MUA out of 1313 TKAs (5.5%) compared to a control group of 50 patients. The mean arc of motion preoperatively was 89.0° (MUA group) vs 92.2° (control) (p=0.47), at discharge 71.0° vs 76.8° (p< 0.05) and 6 weeks follow-up 64.0° vs 97.3° (p< 0.0001). Post manipulation the mean arc of motion was 108° on table, 83.1° at 3 months follow-up and 81.9° at 12 months. Patients whose manipulation was within 3 months of TKA (23 patients) improved their mean arc of motion from 53.6° to 78.0° (p< 0.0025), those 3–12 months (42 patients) from 67° to 83.0° (p< 0.0001) and those >12 months (7 patients) 81° to 89° (p=0.32). Mean increase of extension was 3.7° on table and 3.6° at 12 months. Mean flexion increase was 40.5° on table and 15.7° at 12 months. The relative risk factor for requiring an MUA was 6.97 warfarin (p< 0.05), 1.58 statins, 2.85 diabetes and 1.17 obesity. Conclusions. MUA following primary TKA improves their range of motion if done within 12 months, however only 50% improvement is maintained. Patients with less than 75° flexion at discharge or those on warfarin therapy are likely to require a manipulation to improve their range of movement


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 156 - 156
1 Dec 2013
Ranawat A White P
Full Access

Objective:. Patient-specific or “custom” total knee replacements have been designed to fit the arthritic knee in primary total knee arthroplasty (TKA) better than “off-the-shelf” implants. Using computer technology, patient-specific cutting-blocks and custom-made implants are created to more accurately fit the contour of the knee and reproduce the anatomic J-curve with the hope of providing a better functional outcome. Purpose:. This retrospective, matched-pair study evaluates manipulation under anesthesia (MUA) rates in cemented patient-specific cruciate-retaining (PSCR) TKA compared to that in both cemented posterior-stabilized (PS) and non-cemented cruciate-retaining rotating-platform (NC CR RP) TKA. Materials and Methods:. From 2010 through November of 2012, 21 PSCR TKAs were performed in 19 patients. Using medical records from our patient database, these patients were matched for age, side, deformity, diagnosis, Charnley Class, and preoperative range of motion (ROM) with 42 PS TKAs performed during the same time period by the same surgeon using the same intra- and post-operative protocols. Additionally, 11 NC CR RP TKA were performed and evaluated based on the same criteria. Pre- and postoperative radiographs were performed using criteria as described by The Knee Society. Results:. Preoperatively the custom CR RP TKA cohort had a larger average ROM compared to the PS TKA cohort (P-value = 0.006). Postoperatively, however, the custom CR RP TKA cohort overall was found to have a significantly decreased average ROM compared to both the PS and NC CR RP TKA cohorts (2.0°–110.6° P-value = 0.0002 and 2.4°–117.3° P-value = 0.0003, respectively). 6 of the 21 (28.6%) PSCR TKAs performed underwent MUA to improve postoperative ROM. One manipulation was unsuccessful and the patient is scheduled for revision for arthrofibrosis. No patients in either the matched PS group or the CR RP group underwent postoperative MUA. Clinical and radiographic analysis including pre-operative ROM, deformity, side, Charnley Class, posterior tibial slope angle, epicondylar axis and posterior condylar offsets provided no insight into the reason for this higher MUA rate in the PSCR knees. Conclusion:. MUA rates in the patient-specific TKA group were significantly higher than that in the matched PS and NC CR RP groups. No correlations were found to clearly indicate the cause of the higher MUA rate among the PSCR knees. Early manipulation is recommended for stiffness with these custom devices. Level of Evidence: Level III, Retrospective comparative study. Keywords: Patient-specific total knee, Manipulation, TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 511 - 511
1 Dec 2013
Rogers J Barnes L
Full Access

Postoperative stiffness is a relatively uncommon issue in total knee arthroplasty (TKA). However, it can be a debilitating complication when it occurs. Manipulation under anesthesia (MUA) is commonly used as the primary treatment modality following failed physiotherapy. The ADVANCE® Medial Pivot Knee (Wright Medical Technology) was created in an effort to prevent stiffness postoperatively and increase range of motion. The EVOLUTION® Medial Pivot Knee is a second generation design that builds upon the technology of the ADVANCE® knee. We performed a retrospective review of prospectively collected data on 881 primary medial pivot knees (592 ADVANCE® knees, 289 EVOLUTION® knees). We theorized that the design changes made to the EVOLUTION® knees might contribute toward reducing the need for MUA. We found that the EVOLUTION® knees required significantly fewer manipulations under anesthesia (p = 0.036). The design modifications made to the EVOLUTION® knees may have contributed to the lower rate of MUA


Full Access

OBJECTIVE. Post TKR manipulation under anesthesia is required when post operatively patients don't achieve desired range of motion. The rates quoted in various western literature ranges from 1 to 2 %. A knee is considered to be stiff when the patient fails to achieve 60 degrees of flexion. The objective of the study was to find out the differentiating factor responsible for low rate of MUA in Indian post TKR patients as compared to Anglo-Saxon population. MATERIAL & METHODS. We studied 100 consecutive patients operated from January 2016. The following parameters of these 100 patients were recorded. Pre-op ROM. Age and Sex of the TKR patient. Duration of home physiotherapy. Post opROM. All patients received post operative physiotherapy at home every day for first 2 weeks, 3 times a week for next 2 weeks and then once a week for next two weeks. The implant used was Maxx Freedom knee (PS design). RESULTS. Of the 300 TKR patients 270 were females and 30 were males. The age range for male patients was 65 to 87 years with a mean of 73 years. The age range of female patients was 65 to 83 years with a mean of 71 years. The mean range of motion achieved was 121 degrees. Only one of our patient required manipulation under anesthesia.(0.333%). CONCLUSION. Our rate of MUA is totally different from that of reported from Western world. According to us home physiotherapy is the main differentiating factor responsible for this low rate. Hence we strongly advocate personalized home physiotherapy post TKR with constant feedback mechanism between the operating doctor and the treating physiotherapist


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 87 - 87
1 Feb 2017
Dabuzhsky L Neuhauser-Daley K Plaskos C
Full Access

Arthrofibrosis remains a dominant post-operative complication and reason for returning to the OR following total knee arthroplasty. Trauma induced by ligament releases during TKA soft tissue balancing and soft tissue imbalance are thought to be contributing factors to arthrofibrosis, which is commonly treated by manipulation under anesthesia (MUA). We hypothesized that a robotic-assisted ligament balancing technique where the femoral component position is planned in 3D based on ligament gap data would result in lower MUA rates than a measured resection technique where the implants are planned based solely on boney alignment data and ligaments are released afterwards to achieve balance. We also aimed to determine the degree of mechanical axis deviation from neutral that resulted from the ligament balancing technique. Methods. We retrospectively reviewed 301 consecutive primary TKA cases performed by a single surgeon. The first 102 consecutive cases were performed with a femur-first measured resection technique using computer navigation. The femoral component was positioned in neutral mechanical alignment and at 3° of external rotation relative to the posterior condylar axis. The tibia was resected perpendicular to the mechanical axis and ligaments were released as required until the soft tissues were sufficiently balanced. The subsequent 199 consecutive cases were performed with a tibia-first ligament balancing technique using a robotic-assisted TKA system. The tibia was resected perpendicular to the mechanical axis, and the relative positions of the femur and tibia were recorded in extension and flexion by inserting a spacer block of appropriate height in the medial and lateral compartments. The position, rotation, and size of the femoral component was then planned in all planes such that the ligament gaps were symmetric and balanced to within 1mm (Figure 1). Bone resection values were used to define acceptable limits of implant rotation: Femoral component alignment was adjusted to within 2° of varus or valgus, and within 0–3° of external rotation relative to the posterior condyles. Component flexion, anteroposterior and proximal-distal positioning were also adjusted to achieve balance in the sagittal plane. A robotic-assisted femoral cutting guide was then used to resect the femur according to the plan (Figure 2). CPT billing codes were reviewed to determine how many patients in each group underwent post-operative MUA. Post-operative mechanical alignment was measured in a subset of 50 consecutive patients in the ligament balancing group on standing long-leg radiographs by an independent observer. Results. Post-operative MUA rates were significantly lower in the ligament balancing group (0.5%; 1/199) than in the measured resection group (3.9%; 4/102), p=0.051. 91.3% (42/46) of knees were within 3° and 100% (46/46) were within 4° of neutral alignment to the mechanical axis post-operatively in the ligament balancing group. Conclusions. Gap driven femoral based planning in TKA resulted in a significantly lower post-operative manipulation rate than in the measured resection approach, while maintaining acceptable overall alignment to the mechanical axis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 39 - 39
1 Apr 2019
Izant TH Tong-Ngork S Wagner J
Full Access

Introduction. Manipulation under anesthesia (MUA) after total knee arthroplasty (TKA) helps restore range of motion. This study identifies MUA risk factors to support early interventions to improve functionality. Methods. Data was retrospectively reviewed in 2,925 primary TKAs from October 2013 through December 2015 from 13 orthopedic surgeons using hospital and private practice electronic medical records (EMR). Statistical analysis evaluated MUA and non-MUA groups, comparing demographic, operative, hospital-visit, and clinical factors. T-test, chi-square test, ANOVA and regression analysis were performed. Significance was set at p<0.05. Results. Of 2,925 TKAs, 208 MUAs were performed (7.1%) with no significant differences between groups in sex, BMI, or diabetes status. Mean age of the MUA group was 61.98 years old, and 66.89 years old in the non-MUA group (p<0.005). The ratio of MUA patients with high cholesterol was 3.37% (7/208), and 1.10% (30/2717) in the non-MUA group (p=0.014). The ratio of African-American patients in the MUA group was 6.73% (14/208), and 2.94% (80/2717) in the non- MUA group (p=0.003). Of cases with device data recorded in the EMR (n=1890), MUA incidence in patients receiving a cruciate-retaining (CR) device was 14.58% (50/343), and 9.57% (148/1547) in patients receiving a posterior-stabilized (PS) device (p=0.006). A CR-device patient was 52.35% more likely to undergo MUA than a PS-device patient (95% CI, 1.13–2.05). MUA rate by surgeon training was 6.7% for joint fellowship, 6.8% for general fellowship, and 12.0% for sports medicine fellowship (p=0.015). Further analysis showed that rate of CR-device use was 13.3% for joint-fellowship trained surgeons, 10.2% for general fellowship, and 74.7% for sports medicine fellowship (p<0.001). With the numbers available for this investigation, there were no significant differences found between groups in relation to surgeon, high-volume (>150 TKAs annually) or low-volume surgeons, length of stay, discharge disposition, or smoking status. Conclusion. MUA risk factors include a lower mean age, high cholesterol, African-American, surgeon fellowship training, and receiving a cruciate-retaining device


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 38 - 38
1 Dec 2017
Dagnino G Georgilas I Georgilas K Köhler P Morad S Gibbons P Atkins R Dogramadzi S
Full Access

The treatment of joint-fractures is a common task in orthopaedic surgery causing considerable health costs and patient disabilities. Percutaneous techniques have been developed to mitigate the problems related to open surgery (e.g. soft tissue damage), although their application to joint-fractures is limited by the sub-optimal intra-operative imaging (2D- fluoroscopy) and by the high forces involved. Our earlier research toward improving percutaneous reduction of intra-articular fractures has resulted in the creation of a robotic system prototype, i.e. RAFS (Robot-Assisted Fracture Surgery) system. We propose a robot-bone attachment device for percutaneous bone manipulation, which can be anchored to the bone fragment through one small incision, ensuring the required stability and reducing the “biological cost” of the procedure. It consists of a custom-designed orthopaedic pin, an anchoring system (AS secures the pin to the bone), and a gripping system (GS connects the pin and the robot). This configuration ensures that the force/torque applied by the robot is fully transferred to the bone fragment to achieve the desired anatomical reduction. The device has been evaluated through the reduction of 9 distal femur fractures on human cadavers using the RAFS system. The devices allowed the reduction of 7 fractures with clinical acceptable accuracy. 2 fractures were not reduced: in one case the GS failed and was not able to keep the pin stationary inside the robot (pin rotates inside the GS). The other fracture was too dislocated (beyond the operational workspace capability of the robot). A more stable GS will be designed to avoid displacements between the pin and the robot


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 32 - 32
1 Jan 2016
Carroll K Newman J Holmes A Della Valle AG Cross MB
Full Access

Introduction. Stiffness after total knee arthroplasty is a common occurrence. Despite its prevalence, little is known as to which patients are at risk for poor range of motion after total knee arthroplasty. The purpose of this study was to determine the risk factors for manipulation under anesthesia (MUA) after total knee arthroplasty (TKA). Methods. Using a single institution registry, 160 patients who underwent a manipulation under anesthesia after total knee arthroplasty between 2007 and 2013 were retrospectively evaluated. Each patient was 1:1 matched by age, gender and laterality to a control group of 160 patients who did not require MUA after TKA. Risk factors for MUA were assessed, and included medical co-morbidities, BMI, prior operations, and preoperative range of motion. Results. There were 160 patients in each group, 48 males and 112 females. Patients who required a MUA after TKA had a significantly higher percentage of overweight patients with a BMI >25 (88% vs 76%, p=0.01, Odds ratio=2.18), and previous surgery including arthroscopy (60% vs 33%, P < 0.0001, Odds ratio=3.12). Patients that underwent an MUA had a higher but not significant prevalence of depression and anxiety (22% vs. 16%, p=0.20, Odds Ratio=1.44) and diabetes (15% vs. 8%, p=0.058, Odds Ratio=2.0). Average ROM was 3–110° (Range −10–130°) and 6–102° (Range 0–140°) in the MUA and control groups respectively. In the MUA group, 29% of patients had pre-operative flexion less than 90 degrees pre-operatively compared to 3% in the control group (p=0.02, Odds Ratio=6.6). While the average preoperative range of motion did not differ between the groups, there were a larger percentage of patients with severe limitations in range of motion who ended up needing a MUA after TKA compared to controls. Conclusion. Patients with increased BMI, preoperative range of motion less than 90°, and a history of prior operations should be counseled on the increased risk of requiring a MUA after TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 87 - 87
1 Mar 2017
Plate J Wohler A Brown M Fino N Langfitt M Lang J
Full Access

Introduction. Arthrofibrosis following total knee arthroplasty (TKA) is a complex and multifactorial complication that may require manipulation under anesthesia (MUA). However, patient and surgical factors that potentially influence the development of knee stiffness following TKA are not fully understood. The purpose of this study was to identify patient and surgical factors that may influence arthrofibrosis following TKA by assessing a cohort of patient that underwent MUA and comparing them to a matched cohort of patients without arthrofibrosis. Methods. The joints registry of a university hospital was searched for patient that underwent MUA following primary TKA between 2004 and 2013. Demographic and surgical information was obtained from the electronic medical record including range of motion (ROM), comorbidities and timing of MUA. Patients who underwent MUA were then double-matched by baseline (prior to primary TKA) knee ROM to patients who underwent primary TKA without postoperative arthrofibrosis during the same time period. Results. Fifty-two patients (56 TKAs, 71% female, mean BMI 32.2kg/m2) underwent MUA after TKA during the study period. MUA was performed a mean of 13.6 weeks after primary TKA. Study patient were then double-matched by baseline flexion (mean 107º±2º) to 111 patients (112 TKAs) with a similar mean baseline flexion (104º±2º, p=0.138). Patient requiring MUA were younger (mean age 56 vs. 64 years, p<0.001), had more comorbidities (5 vs. 3, p<0.001), and a higher number of previous knee surgery (56% vs. 21%, p<0.001) compared with controls. The risk for requiring MUA following primary TKA was significantly higher (2.4, p<0.001) in patient with previous knee surgery (arthroscopy for meniscal pathology, ACL reconstruction, osteotomies). Tourniquet time, length of stay, number of physical therapy sessions, blood loss >50 mL and any complication during the hospital stay were not found to be associated with increased risk of requiring MUA. Discussion. Younger patients with more comorbidities and a history of previous knee surgery were found to have significantly higher risk for developing arthrofibrosis and requiring MUA after primary TKA in the current study. Patients with this risk profile need to counseled regarding the risk for arthrofibrosis possibly requiring MUA after primary TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XII | Pages 13 - 13
1 Apr 2012
Thomas W Sangster M Kirubandian R Beynon C Jenkins E Woods D
Full Access

Manipulation under anaesthetic (MUA) for the treatment of frozen shoulder is well established and effective however timing of surgery remains controversial. Intervention before 9 months has previously been shown to be associated with improved outcome. We test this theory by measuring Oxford Shoulder Score (OSS), re-MUA and subsequent surgery rate. A retrospective review of a prospectively collected, single surgeon, consecutive patient series revealed 244 primary frozen shoulders treated by MUA within 4 weeks of presentation. The mean duration of antecedent symptoms was 28 weeks (95% CI 4-44 weeks) and time to follow up was 26 days (95% CI 11-41 days). The mean OSS improved by 16 points (2-tailed t test p< 0.001) with a mean follow up OSS of 43 (95% CI 38-48). 195 shoulders were manipulated before 38 weeks (9 months) and had the same mean change in OSS (16) as the 49 shoulders manipulated after 38 weeks. 48 shoulders, including 15 diabetic shoulders required further MUA. 8 shoulders had subsequent surgery. These events were also independent of antecedent symptom duration. Early MUA does not appear to produce improved outcomes when compared to later intervention but we note does result in an earlier return to function


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 11 - 11
1 Mar 2017
Smith K Mitchell R Le D
Full Access

BACKGROUND. The need for post-operative manipulation under anesthesia (MUA) for stiffness after primary total knee arthroplasty is a frustrating complication that can lead to suboptimal outcomes if range-of-motion to a functional level is not regained. Implant morphology and kinematics, PCL imbalance, and soft-tissue balancing can all contribute to post-operative stiffness. Utilization of total knee arthroplasty components that replicate the native knee's medial ball and socket kinematics may lead to easier maintenance of flexion post-operatively compared to conventional components. PURPOSE. To determine if a medial pivot total knee arthroplasty design can reduce the need for post-operative MUA after primary total knee arthroplasty. METHODS. A retrospective chart review of primary total knee arthroplasties performed between 2013 and 2016 by a single fellowship-trained joint replacement surgeon was performed. Cases that met criteria for inclusion were: primary total knee arthroplasty, identifiable implant based on operative report and/or post-operative radiographs, immediate post-operative passive flexion against gravity of at least 110 degrees, and availability of post-operative follow-up notes documenting range-of-motion that was either satisfactory or necessitating need for MUA. The need for a MUA was deemed necessary if post-operative flexion was not beyond 90 degrees within six weeks of surgery. The percentage of patients requiring MUA for a group implanted with the EVOLUTION Medial Pivot System was compared to a group implanted with all other designs (Stryker Triathlon CR, PS, TS). RESULTS. One hundred fifty-six cases met criteria for inclusion and were reviewed. The Triathlon system was used predominantly in the first half of the study period and accounted for 65 (42%) of the cases performed. Six patients in this group underwent MUA and two patients required repeated MUA. An additional patient in the Triathlon group met the criteria for MUA but had other conditions which prevented the investigators from performing it. The percentage of patients who met the indication for MUA in the Triathlon group was 10.8%. The EVOLUTION system was used predominantly in the second half of the study period and accounted for 91 (58%) of the cases performed. There were two patients (2.2%) who met criteria for MUA and both patients subsequently underwent MUA. There was a statistically significant reduction in the number of patients meeting criteria for MUA in the EVOLUTION group compared with the Triathlon group (p=0.024). CONCLUSION. Utilization of a medial ball and socket design for primary total knee arthroplasty allows the polyethylene implant to control the position of the femur on the tibia. This design possibly allows for improved early maintenance of post-operative flexion, which may minimize the need for post-operative MUA. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 235 - 235
1 Sep 2012
Yeoh D Nicolaou N Goddard R Willmott H Miles K East D Hinves B Shepperd J Butler-Manuel A
Full Access

A reduced range of movement post total knee replacement (TKR) surgery is a well recognised problem. Manipulation under anaesthesia (MUA) is a commonly performed procedure in the stiff post operative TKR. Long term results have been variable in the literature. We prospectively followed up 48 patients since 1996 from one centre, over an average of 7.5 years, (range 1 to 10 years) and report on the long term results. The mean time to MUA post TKR was 12.3 weeks (range 3 to 48). Pre MUA, the mean flexion was 53°. The mean immediate passive flexion post MUA was 97°, an improvement of 44° (Range 10° to 90°, CI < 0.05). By one year, the mean flexion was 87°, improvement of 34°, (range −15° to 70°, CI< 0.05). At ten years the mean flexion was 86°. We found no difference between those knees manipulated before or after 12 weeks. In addition there was no difference found in those knees which had a pre TKR flexion of greater or less than 90°. There were no complications as a result of MUA. However, one patient was eventually revised at two years secondary to low grade infection. Our findings show that MUA is safe and effective method at improving the range of motion in a stiff post operative TKR. The improvement is maintained in the long term irrespective of time to MUA and range of motion pre TKR


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 19 - 19
1 Feb 2013
Sangster M Hetherington J Thomas W Owen J Woods D
Full Access

Manipulation under anaesthetic (MUA) is an established treatment for frozen shoulder. Frozen shoulder may coexist with other shoulder conditions, whose treatment may differ from MUA. One such condition is calcific tendonitis. Only one study to date documents treatment of patients with frozen shoulder and concurrent calcific tendinitis. The objective was to demonstrate that MUA and injection is a satisfactory treatment for concurrent diagnosis of frozen shoulder and calcific tendinitis. Patients with a clinical diagnosis of frozen shoulder and radiological evidence of calcific tendinitis were prospectively recruited from Jan 1999 – Jan 2009. Treatment by MUA and injection was performed. Clinical examination, Oxford Shoulder Scores and need for further treatment were used as outcome measures. Fourteen patients (median age 53.5 years) were identified with frozen shoulder and concurrent calcific tendinitis. Significant improvement in both Oxford Shoulder Score and range of movement was achieved following MUA (P values < 0.001). Two patients required further treatment (not for calcific tendinitis). This improvement was maintained in the long term (median 107 wks). It is our belief that MUA and injection is a safe and effective treatment, addressing the frozen shoulder with MUA takes priority, and as such frozen shoulder “trumps” other pathologies occurring simultaneously


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 74 - 74
1 Dec 2022
Hoit G Khan R Chahal J Whelan DB
Full Access

Multiligament knee injuries (MLKI) are rare and life-altering injuries that remain difficult to treat clinically due to a paucity of evidence guiding surgical management and timing. The purpose of this study was to compare injury specific functional outcomes following early versus delayed surgical reconstruction in MLKI patients to help inform timing decisions in clinical practice. A retrospective analysis of prospectively collected data from patients with MLKIs at a single academic level 1-trauma center was conducted. Patients were eligible for inclusion if they had an MLKI, underwent reconstructive surgery either prior to 6wks from injury or between 12weeks and 2 years from injury, and had at least 12months of post-surgical follow-up. Patients with a vascular injury, open injuries or associated fractures were excluded. Study participants were stratified into early (12 weeks - 2 years from injury). The primary outcome was patient reported, injury specific, quality of life in the form of the Multiligament Quality of Life questionnaire (MLQOL) and its four domains (Physical Impairment, Emotional Impairment, Activity Limitations and Societal Involvement). We secondarily analyzed differences in the need for manipulation under anesthesia, and reoperation rates, as well as radiographic Kellgren Lawrence (KL) arthritis grades, knee laxity grading and range of motion at the most recent follow-up. A total of 131 patients met our inclusion criteria, all having had surgery between 2006 and 2019. There were 75 patients in the early group and 56 in the delayed group. The mean time to surgery was 17.6 ± 8.0 days in the early group versus 279 ± 146.5 days in the delayed. Mean postoperative follow-up was 58 months. There were no significant differences between early and delayed groups with respect to age (34 vs. 32.8 years), sex (77% vs 63% male), BMI (28.3 vs 29.7 kg/m2), or injury mechanism (p>0.05). The early surgery group was found to include more patients with lateral sided injuries (n=49 [65%] vs. n=23 [41%]; p=0.012), a higher severity of Schenck Classification (p=0.024) as well as nerve injuries at initial presentation (n=35 [49%] vs n=8 [18%]; p0.05), when controlling for age, sex, Schenck classification, medial versus lateral injury, and nerve injury status. In terms of our secondary outcomes, we found that the early group underwent significantly more manipulations under anesthesia compare with the delayed group (n=24, [32%] vs n=8 [14%], p=0.024). We did not identify a significant difference in physical examination laxity grades, range of motion, KL grade or reoperation rates between groups (p>0.05). We found no difference in patient reported outcomes between those who underwent early versus delayed surgery following MLKI reconstruction. In our secondary outcomes, we found significantly more patients in the early surgery group required a manipulation under anesthesia following surgery, which may indicate a propensity for arthrofibrosis after early MLKI reconstruction


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 3 - 3
1 Dec 2022
Hoit G Khan R Chahal J Whelan D
Full Access

Multiligament knee injuries (MLKI) are rare and life-altering injuries that remain difficult to treat clinically due to a paucity of evidence guiding surgical management and timing. The purpose of this study was to compare injury specific functional outcomes following early versus delayed surgical reconstruction in MLKI patients to help inform timing decisions in clinical practice. A retrospective analysis of prospectively collected data from patients with MLKIs at a single academic level 1-trauma center was conducted. Patients were eligible for inclusion if they had an MLKI, underwent reconstructive surgery either prior to 6wks from injury or between 12weeks and 2 years from injury, and had at least 12months of post-surgical follow-up. Patients with a vascular injury, open injuries or associated fractures were excluded. Study participants were stratified into early (<6wks from injury) and delayed surgical intervention (>12 weeks – 2 years from injury). The primary outcome was patient reported, injury specific, quality of life in the form of the Multiligament Quality of Life questionnaire (MLQOL) and its four domains (Physical Impairment, Emotional Impairment, Activity Limitations and Societal Involvement). We secondarily analyzed differences in the need for manipulation under anesthesia, and reoperation rates, as well as radiographic Kellgren Lawrence (KL) arthritis grades, knee laxity grading and range of motion at the most recent follow-up. A total of 131 patients met our inclusion criteria, all having had surgery between 2006 and 2019. There were 75 patients in the early group and 56 in the delayed group. The mean time to surgery was 17.6 ± 8.0 days in the early group versus 279 ± 146.5 days in the delayed. Mean postoperative follow-up was 58 months. There were no significant differences between early and delayed groups with respect to age (34 vs. 32.8 years), sex (77% vs 63% male), BMI (28.3 vs 29.7 kg/m. 2. ), or injury mechanism (p>0.05). The early surgery group was found to include more patients with lateral sided injuries (n=49 [65%] vs. n=23 [41%]; p=0.012), a higher severity of Schenck Classification (p=0.024) as well as nerve injuries at initial presentation (n=35 [49%] vs n=8 [18%]; p<0.001). Multivariable linear regression analyses of the four domains of the MLQOL did not demonstrate an independent association with early versus delayed surgery status (p>0.05), when controlling for age, sex, Schenck classification, medial versus lateral injury, and nerve injury status. In terms of our secondary outcomes, we found that the early group underwent significantly more manipulations under anesthesia compare with the delayed group (n=24, [32%] vs n=8 [14%], p=0.024). We did not identify a significant difference in physical examination laxity grades, range of motion, KL grade or reoperation rates between groups (p>0.05). We found no difference in patient reported outcomes between those who underwent early versus delayed surgery following MLKI reconstruction. In our secondary outcomes, we found significantly more patients in the early surgery group required a manipulation under anesthesia following surgery, which may indicate a propensity for arthrofibrosis after early MLKI reconstruction


The purpose of this study was to investigate the effectiveness of casting in achieving acceptable radiological parameters for unstable ankle injuries. This retrospective observational cohort study was conducted involving the retrieval of X-rays of all ankles taken over a 2 year period in an urban setting to investigate the radiological outcomes of cast management for unstable ankle fractures using four acceptable parameters measured on a single X- ray at union. The Picture Archiving and Communication System (PACS) was used, the X-rays were measured by a single observer. From the 1st of January 2020 to the 31st of December 2021, a total of 1043 ankle fractures were treated at the three hospitals with a male to female ratio of 1:1.7. Of the 628 unstable ankle injuries, 19% of patients were lost to follow up. 190 were managed conservatively with casts, requiring an average of 4 manipulations, with a malunion rate of 23.2%. Unstable ankle injuries that were treated surgically from the outset and those who failed conservative management and subsequently converted to surgery had a malunion rate of 8.1% and 11.0% respectively. Unstable ankle fractures pose a challenge with a high rate of radiological malunion, regardless of the treatment Casting surgery from the outset or converted to surgery, with rates of 23% and 8% and 11% respectively. In this multivariate analysis we found that conservative management was the only factor influencing the incidence of malunion, age, sex and type of fracture did not have a scientific significant influence


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 35 - 35
1 Jun 2023
Shields D Eng K Clark T Madhavani K Coundurache C Fong A Mills E Dennison M Royston S McGregor-Riley J
Full Access

Introduction. Open tibial fractures typically occur as a consequence of high energy trauma in patients of working age resulting in high rates of deep infection and poor functional outcome. Whilst improved rates of limb salvage, avoidance of infection and better ultimate function have been attributed to improved centralisation of care in orthoplastic units, there remains no universally accepted method of definitive management of these injuries. The aim of this study is to the report the experience of a major trauma centre utilising circular frames as definitive fixation in patients sustaining Gustilo-Anderson (GA) 3B open fractures. Materials & Methods. A prospectively maintained database was interrogated to identify all patients. Case notes and radiographs were reviewed to collate patient demographics and injury factors . The primary outcome of interest was deep infection rate with secondary outcomes including time to union and secondary interventions. Results. 247 open tibial fractures with a soft tissue manipulation in order to achieve skin cover, of which 203 had a minimum follow up of 2 years. Mean age was 43.2 years old, with 72% males, 34% smokers and 3% diabetics. Total duration of frame management averaged 6.4 months (SD 7.7). Nine (4.4%) patients developed a deep infection and 41 (20%) exhibited signs of a pin site infection. Seventy-five (37%) of patients had a secondary intervention of which; 8 comprised debridement of deep infection, 1 amputation for deep infection and the remainder adjustments of frames. Conclusions. Orthoplastic care including circular frame fixation for GA 3B fractures of the tibia results in a low rate of deep infection, around a quarter of contemporary literature for internal fixation