Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 839 - 844
1 Jul 2018
Ollivier M Laumonerie P LiArno S Faizan A Cavaignac E Argenson J

Aims

In patients where the proximal femur shows gross deformity due to degenerative changes or fracture, the contralateral femur is often used to perform preoperative templating for hip arthroplasty. However, femurs may not be symmetrical: the aim of this study was to determine the degree of variation between hips in healthy individuals and to determine whether it is affected by demographic parameters.

Materials and Methods

CT-scan based modelling was used to examine the pelvis and bilateral femurs of 345 patients (211 males, 134 women; mean age 62 years (standard deviation (sd) 17), mean body mass index 27 kg/m2 (sd 5)) representing a range of ethnicities. The femoral neck-shaft angle (NSA), femoral offset (FO), femoral neck version (FNV), femoral length (FL), femoral canal flare index (fCFI), and femoral head radius (FHr) were then determined for each patient. All measurements were constructed using algorithm-calculated landmarks, resulting in reproducible and consistent constructs for each specimen. We then analyzed femoral symmetry based on absolute differences (AD) and percentage asymmetry (%AS) following a previously validated method.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 877 - 880
1 Jul 2013
Lee YK Kim TY Ha YC Kang BJ Koo KH

Version of the femoral stem is an important factor influencing the risk of dislocation after total hip replacement (THR) as well as the position of the acetabular component. However, there is no radiological method of measuring stem anteversion described in the literature. We propose a radiological method to measure stem version and have assessed its reliability and validity. In 36 patients who underwent THR, a hip radiograph and CT scan were taken to measure stem anteversion. The radiograph was a modified Budin view. This is taken as a posteroanterior radiograph in the sitting position with 90° hip flexion and 90° knee flexion and 30° hip abduction. The angle between the stem-neck axis and the posterior intercondylar line was measured by three independent examiners. The intra- and interobserver reliabilities of each measurement were examined. The radiological measurements were compared with the CT measurements to evaluate their validity. The mean radiological measurement was 13.36° (sd 6.46) and the mean CT measurement was 12.35° (sd 6.39) (p = 0.096). The intra- and interobserver reliabilities were excellent for both measurements. The radiological measurements correlated well with the CT measurements (p = 0.001, r = 0.877). The modified Budin method appears reliable and valid for the measurement of femoral stem anteversion.

Cite this article: Bone Joint J 2013;95-B:877–80.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 477 - 482
1 Apr 2012
Merle C Waldstein W Pegg E Streit MR Gotterbarm T Aldinger PR Murray DW Gill HS

The aim of this retrospective cohort study was to identify any difference in femoral offset as measured on pre-operative anteroposterior (AP) radiographs of the pelvis, AP radiographs of the hip and corresponding CT scans in a consecutive series of 100 patients with primary end-stage osteoarthritis of the hip (43 men and 57 women with a mean age of 61 years (45 to 74) and a mean body mass index of 28 kg/m2 (20 to 45)).

Patients were positioned according to a standardised protocol to achieve reproducible projection and all images were calibrated. Inter- and intra-observer reliability was evaluated and agreement between methods was assessed using Bland-Altman plots.

In the entire cohort, the mean femoral offset was 39.0 mm (95% confidence interval (CI) 37.4 to 40.6) on radiographs of the pelvis, 44.0 mm (95% CI 42.4 to 45.6) on radiographs of the hip and 44.7 mm (95% CI 43.5 to 45.9) on CT scans. AP radiographs of the pelvis underestimated femoral offset by 13% when compared with CT (p < 0.001). No difference in mean femoral offset was seen between AP radiographs of the hip and CT (p = 0.191).

Our results suggest that femoral offset is significantly underestimated on AP radiographs of the pelvis but can be reliably and accurately assessed on AP radiographs of the hip in patients with primary end-stage hip osteoarthritis.

We, therefore, recommend that additional AP radiographs of the hip are obtained routinely for the pre-operative assessment of femoral offset when templating before total hip replacement.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 769 - 776
1 Jun 2011
Hogervorst T Bouma H de Boer SF de Vos J

We examined the morphology of mammalian hips asking whether evolution can explain the morphology of impingement in human hips. We describe two stereotypical mammalian hips, coxa recta and coxa rotunda. Coxa recta is characterised by a straight or aspherical section on the femoral head or head-neck junction. It is a sturdy hip seen mostly in runners and jumpers. Coxa rotunda has a round femoral head with ample head-neck offset, and is seen mostly in climbers and swimmers.

Hominid evolution offers an explanation for the variants in hip morphology associated with impingement. The evolutionary conflict between upright gait and the birth of a large-brained fetus is expressed in the female pelvis and hip, and can explain pincer impingement in a coxa profunda. In the male hip, evolution can explain cam impingement in coxa recta as an adaptation for running.