Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 140 - 140
1 Sep 2012
Muccioli GMM Zaffagnini S Lopomo N Bruni D Nitri M Bonanzinga T Grassi A Ravazzolo G Molinari M Rimondi E Marcacci M
Full Access

Purpouse. We hypothesized that patients receiving a medial collagen meniscus implant (MCMI) would show better clinical, radiograpich and Magnetic Resonanace Imaging (MRI) outcomes than patients treated with partial medial meniscectomy (PMM) at minimum 10 year FU. Material and Methods. Thirty-three non-randomized patients (males, mean age 40 years) were enrolled in the study to receive a MCMI (17 patients) or as control treated with a PMM (16 patients). All of them were clinically evaluated at time zero, 5 and minimum 10 years after surgery (mean FU 133 months, range 120–145) by Lysholm, VAS for pain, objective IKDC knee form and Tegner activity level. SF-36 score was performed pre-operatively and at final FU. Bilateral weight-bearing XRays were executed at time zero and at final FU. Minimum 10 years FU MRI images were compared with collected pre-operative MRI images by means of Yulish score. Genovese score was also used to evalute MCMI MRI survivorship. Results. MCMI group showed significantly lower VAS for pain (p = 0.0091), higher objective IKDC (p = 0.0026), Teger index (p = 0.0259) and SF-36 (p = 0.0259 for PHI and p = 0.0036 for MHI) scores compared with PMM group at minimum 10 year FU. Radiographic evaluation showed a significantly lower medial joint line height (p = 0.0002) and side-to-side difference (p = 0.0003) narrowing in MCMI group respect to PMM group at final FU. Discussion. Improvements in pain relief, activity level, objective IKDC score and joint-line preservation are detectable with the use of MCMI at a minimum 10 year FU. On the authors knowledge this is the first long-term controlled trial regarding this device, and our findings confirmed the mid-term good results achieved by Rodkey et al (1). Conclusions. This data support the use of meniscal scaffolds to treat irreparable partial meniscal lesions. Long-term prospective randomized controlled trials on a larger population are necessary to determine the extent and duration of the benefits observed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 92 - 92
1 Sep 2012
Verdonk P Beekman P De Coninck T Verdonk R Raat F
Full Access

Purpose. to evaluate the kinematics of a knee with a polyurethane meniscal scaffold for partial meniscus defect substitution during flexion under weightbearing conditions in an upright MRI. In addition, radial displacement and the surface of the scaffold was compared to the normal meniscus. Materials and Methods. One cadaver with a normal lateral meniscus and medial scaffold in the left knee and with a normal medial meniscus and lateral scaffold in the right knee. The scaffolds were implanted to substitute a 3 cm meniscus defect in the posterior horn. The cadaver was scanned in an 0,7T open MRI with a range of motion from 0-30-60-90 to hyperflexion. Kinematics were evaluated on sagittal images by the following two parameters: the position of the femoral condyle, identified by the centre of its posterior circular surface, which is named the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP). Both were identified in relation to the posterior tibial cortex. The displacement, measured on coronal images, is defined as the distance between the tibial plateau and the outer edge of the meniscus. The surface was also measured on coronal slices and contains the triangular surface of the meniscus. Results. Medially from 0 degrees to hyperflexion the FFC does not move anteroposteriorly. Laterally the FFC moves 12 mm backwards. The CP moves 15 mm backwards both lateral and medial. The lateral femoral condyle does roll-back with flexion but the medial does not, so the femur rotates externally around a medial centre. By contrast, both medial and lateral contact points move back, roughly in parallel, from 0 degrees to hyperflexion. The kinematics of the involved compartment is not influenced by the presence of the scaffold compared to the controlateral normal compartment. The radial displacement remains stable during full flexion: both the normal and scaffold meniscus have no different (p > 0,05) position. Both for the normal and the scaffold meniscus there is no difference (p > 0,05) in surface; there is no compression of the meniscus during flexion. Conclusion. The polyurethane implant, indicated for partial meniscus defect substitution, has no effect on the normal kinematics of the knee. Additionally, the degree of flexion has no effect on the external displacement, the surface and compressibility of both the implanted scaffold and the meniscus


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 433 - 433
1 Sep 2012
Löcherbach C Schmeling A Weiler A
Full Access

Introduction. An accurate and reproducible tibial tunnel placement without danger for the posterior neurovascular structures is a crucial condition for successful arthroscopic reconstruction of the posterior cruciate ligament (PCL). This step is commonly performed under fluoroscopic control. Hypothesis: Performing the tibial tunnel under exclusive arthroscopic control leads to accurate tunnel placement according to recommendations in the literature. Materials and Methods. Between February 2007 and December 2009, 108 arthroscopic single bundle PCL reconstructions in tibial tunnel technique were performed. The routine postoperative radiographs were screened according to defined quality criterions: 1. Overlap of the medial third of the fibular head by the tibial metaphysis on a-p views 2. Overlap of the dorsal femoral condyles within a range of 4 mm on lateral views 3. X-ray beam parallel to tibial plateau in both views. The radiographs of 48 patients (48 knees) were enrolled in the study. 10 patients had simultaneous ACL reconstruction and 7 had PCL revision surgery. The tibial tunnel was placed under direct arthroscopic control through a posteromedial portal using a standard tibial aming device. Key anatomical landmarks were the exposed tibial insertion of the PCL and the posterior horn of the medial meniscus. During digital analysis of the postoperative radiographes, the centre of the posterior tibial outlet was determined. On the a-p view, the horizontal distance of this point to the medial tibial spine was measured. The distance to the medial border of the tibial plateau was related to its total width. On the lateral view the vertical tunnel position was measured perpendicularly to a tangent of the medial tibial plateau. Results. The mean mediolateral tunnel position was 49,3 ± 4,6%, 6,7 ± 3,6 mm lateral to the medial tibial spine. On the lateral view the tunnel centre was 10,1 ± 4,5 mm distal to the bony surface of the medial tibial plateau. Neurovascular damage was observed in none of our patients. Conclusion. The results of this radiological study confirm that exclusive arthroscopic control for tibial tunnel placement in PCL reconstruction yields reproducible and accurate results according to the literature. Our technique avoids radiation, facilitates the operation room setting and enables the surgeon to visualize the key landmarks for tibial tunnel placement


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1165 - 1171
1 Sep 2013
Arastu MH Kokke MC Duffy PJ Korley REC Buckley RE

Coronal plane fractures of the posterior femoral condyle, also known as Hoffa fractures, are rare. Lateral fractures are three times more common than medial fractures, although the reason for this is not clear. The exact mechanism of injury is likely to be a vertical shear force on the posterior femoral condyle with varying degrees of knee flexion. These fractures are commonly associated with high-energy trauma and are a diagnostic and surgical challenge. Hoffa fractures are often associated with inter- or supracondylar distal femoral fractures and CT scans are useful in delineating the coronal shear component, which can easily be missed. There are few recommendations in the literature regarding the surgical approach and methods of fixation that may be used for this injury. Non-operative treatment has been associated with poor outcomes. The goals of treatment are anatomical reduction of the articular surface with rigid, stable fixation to allow early mobilisation in order to restore function. A surgical approach that allows access to the posterior aspect of the femoral condyle is described and the use of postero-anterior lag screws with or without an additional buttress plate for fixation of these difficult fractures.

Cite this article: Bone Joint J 2013;95-B:1165–71.