Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 227 - 232
1 Feb 2019
Walker T Rutkowski L Innmann M Panzram B Herre J Gotterbarm T Aldinger PR Merle C

Aims. The treatment of patients with allergies to metal in total joint arthroplasty is an ongoing debate. Possibilities include the use of hypoallergenic prostheses, as well as the use of standard cobalt-chromium (CoCr) alloy. This non-designer study was performed to evaluate the clinical outcome and survival rates of unicondylar knee arthroplasty (UKA) using a standard CoCr alloy in patients reporting signs of a hypersensitivity to metal. Patients and Methods. A consecutive series of patients suitable for UKA were screened for symptoms of metal hypersensitivity by use of a questionnaire. A total of 82 patients out of 1737 patients suitable for medial UKA reporting cutaneous metal hypersensitivity to cobalt, chromium, or nickel were included into this study and prospectively evaluated to determine the functional outcome, possible signs of hypersensitivity, and short-term survivorship at a minimum follow-up of 1.5 years. Results. At a mean follow-up of three years (1.5 to 5.7), no local or systemic symptoms of hypersensitivity to metal were observed. One patient underwent revision surgery to a bicondylar prosthesis due to a tibial periprosthetic fracture resulting in a survival rate of 98.8% (95% confidence interval (CI) 91.7 to 99.8; number at risk, 28) at three years with the endpoint of revision for any reason and a survival rate of 97.6% (95% CI 90.6 to 99.3; number at risk, 29) for the endpoint of all reoperations. Clinical outcome was good to excellent with a mean Oxford Knee Score of 42.5 (. sd. 2.5; 37 to 48). Conclusion. This study is the first demonstrating clinical results and survival analysis of UKA using a CoCr alloy in patients with a history of metal hypersensitivity. Functional outcome and survivorship are on a high-level equivalent to those reported for UKA in patients without a history of metal hypersensitivity. No serious local or systemic symptoms of metal hypersensitivity could be detected, and no revision surgery was performed due to an adverse reaction to metal ions


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1126 - 1134
1 Aug 2012
Granchi D Cenni E Giunti A Baldini N

We report a systematic review and meta-analysis of the peer-reviewed literature focusing on metal sensitivity testing in patients undergoing total joint replacement (TJR). Our purpose was to assess the risk of developing metal hypersensitivity post-operatively and its relationship with outcome and to investigate the advantages of performing hypersensitivity testing. We undertook a comprehensive search of the citations quoted in PubMed and EMBASE: 22 articles (comprising 3634 patients) met the inclusion criteria. The frequency of positive tests increased after TJR, especially in patients with implant failure or a metal-on-metal coupling. The probability of developing a metal allergy was higher post-operatively (odds ratio (OR) 1.52 (95% confidence interval (CI) 1.06 to 2.31)), and the risk was further increased when failed implants were compared with stable TJRs (OR 2.76 (95% CI 1.14 to 6.70)). Hypersensitivity testing was not able to discriminate between stable and failed TJRs, as its predictive value was not statistically proven. However, it is generally thought that hypersensitivity testing should be performed in patients with a history of metal allergy and in failed TJRs, especially with metal-on-metal implants and when the cause of the loosening is doubtful


The Bone & Joint Journal
Vol. 98-B, Issue 4 | Pages 437 - 441
1 Apr 2016
Middleton S Toms A

We explored the literature surrounding whether allergy and hypersensitivity has a clinical basis for implant selection in total knee arthroplasty (TKA). In error, the terms hypersensitivity and allergy are often used synonymously. Although a relationship is present, we could not find any evidence of implant failure due to allergy. There is however increasing basic science that suggests a link between loosening and metal ion production. This is not an allergic response but is a potential problem. With a lack of evidence logically there can be no justification to use ‘hypoallergenic’ implants in patients who have pre-existing skin sensitivity to the metals used in TKA.

Cite this article: Bone Joint J 2016;98-B:437–41.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims. Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). Methods. Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence. Results. We included 38 heterogeneous studies (two randomized controlled trials, six comparative studies, 19 case series, and 11 case reports). The evidence indicates that metal hypersensitivity is a rare complication with some histopathological features leading to pain and dissatisfaction with no reliable screening tests preoperatively. Hypoallergenic implants are viable alternatives for patients with self-reported/confirmed metal hypersensitivity if declared preoperatively; however, concerns remain over their long-term outcomes with ceramic implants outperforming titanium nitride-coated implants and informed consent is paramount. For patients presenting with painful TKA, metal hypersensitivity is a diagnosis of exclusion where patch skin testing, lymphocyte transformation test, and synovial biopsies are useful adjuncts before revision surgery is undertaken to hypoallergenic implants with shared decision-making and informed consent. Conclusion. Using the limited available evidence in the literature, we provide a practical approach to metal hypersensitivity in TKA patients. Future national/registry-based studies are needed to identify the scale of metal hypersensitivity, agreed diagnostic criteria, and management strategies. Cite this article: Bone Jt Open 2021;2(10):785–795


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 141 - 141
1 Jul 2020
Delisle J Benderdour M Benoit B Giroux M Laflamme GY Nguyen H Ranger P Shi Q Vallières F Fernandes J
Full Access

Total Knee Arthroplasty (TKA) patients may present with effusion, pain, stiffness and functional impairment. A positive metal hypersensitivity (positive LTT) may be an indication for a revision surgery with a custom-made implant devoid of any hypersensitivity-related metal or an implant with the least possible ion content of the metal hypersensitivity, if no custom-made is available. The purpose of the current study is to assess the prevalence of metal hypersensitivity in subjects requiring a primary TKA and assess their early functional outcomes. We are recruiting 660 subjects admitted for TKA. Subjects are randomly assigned to 2 groups: oxidized zirconium implant group or cobalt-chrome implant group. Functional outcomes and quality of life (QoL) are measured pre operatively, 3, 6 and 12 months post operatively with WHOQOL-BREF (domain1-Physical Health, domain 2- Psychological, domain 3- Social relationships, domain 4-Environment), KSS, KOOS and pain Visual Analog Scale (VAS). LTT and metal ions are evaluated pre operatively and 12 months post-surgery. One hundred-sixty patients, 98 women, were enrolled in the study. Mean age was 65.6±8.9. Mean follow up (FU) was 7.1±3.8 months. Eighty-one (50.6%) were randomised in the cobalt-chrome group. Infection rate was 1.9%, one patient required debridement. Three patients (1.9%) presented with contracture at three months FU. At 12 months, WHOQOL-BREF domain 1, 2 and 4 improved significantly (p0,05). Overall, all 160 patients improved their functional outcomes and QoL. At 12 months, VAS scores decreased from 7±2.06 at baseline to 1.95±2.79. Furthermore, the high prevalence of positive LTT (27/65) do not seem to affect early functional outcomes and QoL on patients that may have received a potential implant with hypersensitivity (18/27)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 30 - 30
1 Feb 2020
Hermle T Reyna AP Pfaff A Bader U Fink B Grupp T
Full Access

Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity, adverse local tissue reactions and systemic ion related diseases. The purpose of the following study was compare the ion release barrier function of a zirconium nitride (ZrN) multilayer coated hip stem for cemented use, designed for patients with metal ion hypersensitivity, against its uncoated version in a test configuration simulating the worst case scenario of a severely debonded hip stem. The ZrN multilayer coating is applied on a CoCrMo hip stem and consists of a thin adhesive chromium layer, five alternating intermediate layers out of chromium nitride (CrN) and chromium carbonitride (CrCN) and a final zirconium nitride (ZrN) shielding layer [1]. Methods. Hip stems with a ZrN multilayer coating (CoreHip AS, Aesculap AG, Germany) were tested in comparison with a cobalt-chrome uncoated version (CoreHip, Aesculap AG, Germany). In order to create a worst case scenario, the smallest stem size with the biggest offset in combination with an XL ceramic head (offset +7 mm) was used. The stems were embedded according to the ISO 7206-6 test in a bone cement sheet. Once the bone cement was bonded, the stem was pulled out and a PMMA grain was placed inside the femoral cavity in order to uprise the hip stem above its embedding line and simulate a debonded cemented hip stem with a severe toggling condition. The dynamic test was performed under bovine serum environment with an axial force of 3.875 kN [2] at 11.6 Hz for 15 million cycles. The test was interrupted after 1, 3, 5, 10 and 15 million cycles and the surfaces of the stems were analyzed through scanning electron microscopy (SEM) with energy dispersive X-Ray (EDX). Moreover, the test medium was analyzed for metal ion concentration (cobalt, chromium and molybdenum) using ICP-MS. Results. The SEM/EDX analysis demonstrated that the ZrN multilayer coating kept its integrity, as no trace of the substrate material (CoCrMo) could be detected. Furthermore, the taper of the ZrN group showed less fretting and corrosion than the taper of the CoCrMo stem (Fig.1). Moreover, the ion concentration analysis showed a reduction of up to two orders of magnitude in the release of cobalt, chromium and molybdenum in the ZrN coated stems in comparison with the uncoated version. Discussion. The results showed that, even in a worst case scenario of high micro-motion due to a severe stem debonding within the cement mantle, the hip stems with a ZrN multilayer coating substantially reduce the release of ions from the substrate material. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 8, Issue 10 | Pages 443 - 450
1 Oct 2019
Treacy RBC Holland JP Daniel J Ziaee H McMinn DJW

Objectives. Modern metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), while achieving good results with well-orientated, well-designed components in ideal patients, is contraindicated in women, men with head size under 50 mm, or metal hypersensitivity. These patients currently have no access to the benefits of HRA. Highly crosslinked polyethylene (XLPE) has demonstrated clinical success in total hip arthroplasty (THA) and, when used in HRA, potentially reduces metal ion-related sequelae. We report the early performance of HRA using a direct-to-bone cementless mono-bloc XLPE component coupled with a cobalt-chrome femoral head, in the patient group for whom HRA is currently contraindicated. Methods. This is a cross-sectional, observational assessment of 88 consecutive metal-on-XLPE HRAs performed in 84 patients between 2015 and 2018 in three centres (three surgeons, including the designer surgeon). Mean follow-up is 1.6 years (0.7 to 3.9). Mean age at operation was 56 years (. sd. 11; 21 to 82), and 73% of implantations were in female patients. All patients were individually counselled, and a detailed informed consent was obtained prior to operation. Primary resurfacing was carried out in 85 hips, and three cases involved revision of previous MoM HRA. Clinical, radiological, and Oxford Hip Score (OHS) assessments were studied, along with implant survival. Results. There was no loss to follow-up and no actual or impending revision or reoperation. Median OHS increased from 24 (interquartile range (IQR) 20 to 28) preoperatively to 48 (IQR 46 to 48) at the latest follow-up (48 being the best possible score). Radiographs showed one patient had a head-neck junction lucency. No other radiolucency, osteolysis, component migration, or femoral neck thinning was noted. Conclusion. The results in this small consecutive cohort suggest that metal-on-monobloc-XLPE HRA is successful in the short term and merits further investigation as a conservative alternative to the current accepted standard of stemmed THA. However, we would stress that survival data with longer-term follow-up are needed prior to widespread adoption. Cite this article: R. B. C. Treacy, J. P. Holland, J. Daniel, H. Ziaee, D. J. W. McMinn. Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone Joint Res 2019;8:443–450. DOI: 10.1302/2046-3758.810.BJR-2019-0060.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 49 - 49
1 Oct 2018
Samelko L Caicedo M Jacobs J Hallab NJ
Full Access

Introduction. There are several potential biological mechanisms that may influence aseptic implant failure including excessive innate and adaptive immune responses to implant debris. We investigated the hypothesis that patients with painful total joint replacements will exhibit elevated levels of metal reactivity and inflammatory markers compared to patients with well-performing TJA. We evaluated this hypothesis by testing for metal hypersensitivity using in vitro LTT assay and analyzing serum levels of selected inflammatory markers. Methods. Subject Groups: Blinded de-identified data from patients with TJR referred for metal hypersensitivity testing using a lymphocyte transformation test (LTT) and serum markers of inflammation using Luminex Multi-Analyte Assay was approved by Rush University IRB and retrospectively reviewed. None of the patients had radiographically identifiable osteolysis. Two groups of TJA patients were tested: Group 1: Well-functioning implant (<3 yrs. post-op), with no self-reported pain, i.e. <1 on 0–10 VAS scale (n=8) and Group 2: Painful TJR (<3 yrs. post-op), with self-determined pain of >8 on a 0–10 VAS scale at the time of blood draw (n=25). Metal-LTT: Peripheral blood mononuclear cells (PBMCs) were collected from 30mL of peripheral blood by Ficoll gradient separation. PBMCs were cultured with NiCl2. 3H Thymidine was added at day 5 of culture and 3H thymidine incorporation was analyzed using a beta scintillation counter at day 6. A stimulation index (SI) of reactivity was calculated by dividing scintillation counts per minute (cpms) of Ni challenged cells by those of untreated controls. A SI of <2 was considered nonreactive, 2 to <4 was mildly reactive and 4 to <8 was reactive. Luminex Assay: Serum samples were collected from whole blood and were analyzed according to manufacturer's protocols. Statistical analysis: Statistical differences were determined using unpaired t-test with Welch's correction with statistical significance at p≤0.1 (90% confidence interval). Results. To test if differences in metal sensitization exist among individuals with joint pain following TJR vs. well-functioning TJR (no pain), we analyzed each person-specific PBMC SI of reactivity to NiCl2. Painful TJR group exhibited greater sensitivity as demonstrated by significantly higher in vitro metal SI level. In general, inflammatory markers measured in serum among patients with pain following TJR were significantly increased compared to patients with no pain following TJR. Specifically, inflammatory markers that are classified as prototypical markers of a M1 inflammatory macrophage i.e. GMCSF, IL-12, IL-18, IL-1β and TNFα were significantly greater in TJR patients with pain compared to TJR patients with no pain. Due to this increase in inflammatory markers, IL-4, an anti-inflammatory marker was also significantly greater in TJR patients with pain in order to combat/mitigate the inflammatory microenvironment. While VEGF was the only marker that was significantly greater in TJR patients with no pain and is characteristic of M2 anti-inflammatory macrophage phenotype. Discussion. Metal sensitivity reactivity and serum markers of inflammation demonstrated significant differences between groups of patients with painful TJRs vs. well-functioning TJR. Classical markers of M1 phenotype were significantly greater in painful TJR group. Our data suggests that patients with self-reported pain following a TJR demonstrate active innate and adaptive immune responses that are significantly higher than patients with a well-performing TJR and that these differences are associated with detectable serum inflammatory markers. An important limitation of this study however, is that group subject numbers were low and that statistical differences found in these groups suggests these inflammatory markers may be more marked than was anticipated


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 5 - 5
1 Jan 2016
Goto K Kitamura N Kondo E Yokota M Wada S Thoyama H Yasuda K
Full Access

Introduction. Metals used for total knee arthroplasty (TKA) are well known for their good biocompatibility, but may be a source of a release of metal ions that can be a cause of local and systemic adverse effects, aseptic loosening, and hypersensitivity reactions. One of the major difficulties in performing TKA is the selection of implants for patients who are preoperatively diagnosed as subject to metal sensitivity. Alternative solutions in cases of hypersensitivity are implants without metal constituents or metallic implants treated with a non-sensitive surface process. The aim of this study was to evaluate clinical results in patients who had been preoperatively diagnosed with metal sensitivity and who subsequently were provided with the zirconia-ceramic LFA-III TKA, and with a minimum 5-year follow-up. Methods. Five patients (8 knees) with metal sensitivity underwent TKA using cemented zirconia-ceramic LFA-III implants. The LFA-III implant (KYOCERA Medical Co., Japan) is composed of a zirconia ceramic femoral component and a titanium-alloy tibial component with a polyethylene insert. All patients were female andthe average age at the time of surgery was 76.1 years. The average follow-up time was 7.2 years. Clinical and radiographic assessments were conducted with the Knee Society scoring system. Results. No patients except one who had palmoplantar pustulosis preoperatively presented systemic or local dermatitis after surgery. The mean preoperative range of motion of 97.6 degrees improved to a mean of 110.7 degrees at the time of the most recent follow-up. The mean postoperative knee and function scores were 77.1 and 66.9, respectively. Subtle periprosthetic radiolucencies were found in 2 knees after the surgery. Discussion. The zirconia-ceramic LFA-III TKA has performed well over a 5-year period in patients with metal hypersensitivity. Although this implant has a metal tibial component made of titanium, no systemic or local adverse events related to metal hypersensitivity were recorded. Ceramic implants can be an attractive alternative solution for patients suffering from hypersensitivity reactions to metals


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 301 - 301
1 Mar 2013
Patel A Patel R Thomas D Stulberg SD Bauer T
Full Access

Introduction. Modular femoral necks have shown promising clinical results in total hip arthroplasty (THA) to optimize offset, rotation, and leg length. Given the wide variety of proximal femoral morphology, fine-tuning these kinematic parameters can help decrease femoroacetabular impingement, decrease wear rates and help prevent dislocations. Yet, additional implant junctions introduce additional mechanisms of failure. We present two patients who developed an abnormal soft tissue reaction consistent with a metal hypersensitivity reaction at a modular femoral neck/stem junction requiring revision arthroplasty. Methods. Two patients underwent THA for primary osteoarthritis with the same series of components: 50 mm shell, a 36 mm highly-crosslinked polyethylene liner, uncemented titanium alloy modular stem with a 130 degree Cobalt Chromium (CoCr) modular femoral neck, and 36 mm CoCr head with a +5-mm offset. Patient 1 was a 63 year-old female who had an uneventful post-operative course but presented seven months later with progressive pain in the left hip. Patient 2 was an 80 year-old female who did well post-operatively, but presented with limp and persistent pain at 10 months post-op. An initial evaluation of a painful THA to rule out aseptic loosening, infection, mal-positioning, loosening and osteolysis included radiographs, lab work (CBC, ESR, CRP, Cobalt & Chromium levels) and Metal Artifact Reduction Sequence (MARS) MRI. Results. Elevated ion levels (Table 1) and Metal Artifact Reduction Sequence (MARS) MRI were consistent with an abnormal soft tissue reaction. A histological analysis of operative specimens displayed extensive necrosis and lymphocytosis, consistent with the diagnosis of metal hypersensitivity reactions (MHSR). Both patients underwent debridement and revision femoral arthroplasty with non-modular counterparts of the original femoral implant and have been asymptomatic post-operatively at greater than 1 year follow-up. Discussion. MHSR reactions are primarily described in the setting of metal on metal articulations of the head and acetabulum in THA and hip resurfacing. These reactions have not been reported at the modular neck/stem junction. Although modular necks show promise in THA, the advantages of increased component modularity must be carefully weighed against the risks of mechanical wear and subsequent MHSR and/or component failure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 90 - 90
1 Nov 2016
Su E
Full Access

Metal-on-metal (MOM) hip arthroplasty has been associated with a variety of new failure modes that may be unfamiliar to surgeons who traditionally perform metal-on-polyethylene THR. These failure modes include adverse local tissue reaction to metal debris, hypersensitivity to metal debris, accelerated wear/metallosis, pseudotumours, and corrosion. A significant number of patients with metal-on-metal hip arthroplasty may present to surgeons for routine followup, concern over their implant, or frank clinical problems. A common issue with MOM hip arthroplasty that can lead to accelerated wear and failure is implant malposition. Malposition of a hard-on-hard bearing can lead to edge loading and accelerated wear at the articular surfaces, which will lead to elevation in blood metal ion levels and metallosis. Distinct from this failure mode is the possibility of metal hypersensitivity, which is believed to be an immunologically mediated reaction to normal amounts of metal debris. Because a modular MOM THR has multiple junctions and tapers that come into contact with one another, there also is the possibility of non-articular metal debris production and corrosion. This type of corrosion reaction can lead to soft tissue destruction not commonly seen with hip resurfacing. Therefore, it is important for orthopaedic surgeons to be aware of the intricacies of following a metal-on-metal hip arthroplasty and to be able to interpret test results such as metal ion levels and cross-sectional imaging. Furthermore, there is a difference in the incidence of problems depending upon the type of implant: hip resurfacing, small-diameter head metal-on-metal total hip replacement, and large diameter head MOM THR. This presentation will discuss the importance of routine monitoring and followup for patients with MOM THR, as well as the utility of measuring blood metal ion levels. The published risk stratification algorithm from the Hip Society will be reviewed


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 406 - 406
1 Sep 2009
Jameson S Langton D Nargol A
Full Access

Introduction: Patient selection has been critical to the excellent medium-term clinical results following hip resurfacing. Hypersensivity to metal ion debris has been described in previous generations of metal-on-metal bearings. This may also be a problem that affects modern designs. Characteristic histological changes have been identified (ALVAL). There are few studies that include large female numbers, and show separate outcome and implant survival. Methods: Eighty-one female hips at a mean of 23 months (11–43) had an ASR hip resurfacing procedure at a single-surgeon independent centre. Mean age was 55 years (28–69). Harris Hip Scores (HHS) were recorded at one-year follow-up. Failures were analysed. Results: HHS improved from 46.4 (11–77) to 90.2 (27–100). Overall, there was a 7.4 % revision rate. There were 3 femoral neck fractures. In the entire series of 98 female patients there were 3 cases of severe pain requiring revision (3.1%). All three patients had HHS < 50 at one year follow-up. Patients had groin pain, reduced flexion and a painful straight leg raise. Blood results were not suggestive of infection. Aspiration of the hip joint in each case revealed copious amounts of milky green grey aseptic fluid. All had similar macroscopic changes at revision. There were characteristic histological changes in keeping with ALVAL. All 3 patients were revised to THRs with ceramic bearings. Discussion: The failure rate of 7.4% in the older female group is poor at this early stage following hip resurfacing. The incidence of metal hypersensitivity in our series suggests this complication may be more common than previously thought. Patients with persisting pain of unknown aetiology following resurfacing at other centres may have metal hypersensitivity


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 71 - 71
1 Jul 2014
MacDonald S
Full Access

Only a little over a decade ago the vast majority of primary total hip replacements performed in North America, and indeed globally, employed a conventional polyethylene insert, either in a modular version or in a cemented application. Beginning in the early 2000's there was an explosion in technology and options available for the bearing choice in total hip arthroplasty. Highly crosslinked polyethylene was introduced in 1998, and within a few short years the vast majority of polyethylene inserts performed in North America were manufactured from this material. Globally there was a mixed picture with variable market penetration. Surgeons had seen historically poor results with attempts at “improving” polyethylene in the past and many were hesitant to use this new technology. Many randomised clinical trials have been performed and all have shown to a greater or lesser degree, that indeed the highly crosslinked polyethylene insert has undergone less linear and volumetric wear than its more conventional counterpart. The challenge, however, is as we approached mid-term results, orthopaedic manufacturers began altering the polyethylene to improve wear and improve mechanical strength. Therefore while ten-year and greater data will ultimately be published, the actual polyethylene in use at that time will be a different material. Additionally while wear rates are undoubtedly lower, we are still waiting for long-term results of actual osteolytic lesion development and the effect that highly crosslinked polyethylene will have on this clinical scenario. That being said, with over a decade of clinical experience, unquestionably highly crosslinked polyethylene has truly been a revolution in design, essentially eliminating polyethylene wear as an early failure mode. During this same decade metal-on-metal implants had seen a significant resurgence in use. Metal-on-metal implants had in-vitro advantages with very low wear rates. They allowed the use of large metal heads and articulations, thereby improving range of motion and stability. Concerns always existed regarding the production of metal ions and the potential for metal hypersensitivity, as well as possible systemic effects. Metal hypersensitivity remains a diagnosis of exclusion with no definitive diagnostic tests to either screen for it, or diagnose it, if suspected. Over the past few years metal-on-metal implant use has dropped significantly, to the point now in 2013, where the only remaining application is resurfacing implants in the younger male patient. Ceramic-on-ceramic bearings enjoy the lowest wear rates of all currently available hip articulations. Historically there has been concern regarding fracturing of both the inserts and the heads, although current generation ceramic-on-ceramic bearings have a much lower reported fracture rate. The phenomenon of a squeaking articulation remains a concern for both patient and surgeon. Conflicting reports exist on whether this is related to implant malposition or is a function of the bearing itself. As with other bearings, improvements in technology continue to evolve and newer ceramics have recently been introduced and are in clinical practice. The future will continue to see the evolution of the articulation in total hip arthroplasty. Patients are undergoing total hip replacements at younger ages and clearly have higher demands than seen historically. That being said, two factors will have a major influence on future developments. The tremendous clinical success of highly crosslinked polyethylene should have us all question the need for significant changes in bearing material and the current environment following the multiple issues with metal-on-metal is one of evolutionary, rather than revolutionary, design and introduction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 8 - 8
1 May 2014
MacDonald S
Full Access

Only a little over a decade ago the vast majority of primary total hip replacements performed in North America, and indeed globally, employed a conventional polyethylene insert, either in a modular version or in a cemented application. Beginning in the early 2000's there was an explosion in technology and options available for the bearing choice in total hip arthroplasty. Highly cross-linked polyethylene was introduced in 1998, and within a few short years the vast majority of polyethylene inserts performed in North America were manufactured from this material. Globally there was a mixed picture with variable market penetration. Surgeons had seen historically poor results with attempts at “improving” polyethylene in the past and many were hesitant to use this new technology. Many randomised clinical trials have been performed and all have shown to a greater or lesser degree, that indeed the highly cross-linked polyethylene insert has undergone less linear and volumetric wear than its more conventional counterpart. This replicates well the hip simulator data. The challenge however is as we approached mid-term results, orthopaedic manufacturers began altering the polyethylene to improve wear and improve mechanical strength. Therefore while ten-year and greater data will ultimately be published, the actual polyethylene in use at that time will be a different material. Additionally while wear rates are undoubtedly lower, we are still waiting for long-term results of actual osteolytic lesion development and the effect that highly cross-linked polyethylene will have on this clinical scenario. That being said, with over a decade of clinical experience, unquestionably highly cross-linked polyethylene has truly been a revolution in design, essentially eliminating polyethylene wear as an early failure mode. During this same decade metal-on-metal implants had seen a significant resurgence in use. Most major orthopaedic companies produced a metal-on-metal implant whether in the form of a more conventional modular insert, or a monoblock resurfacing-type implant, or both. Metal-on-metal implants had in-vitro advantages with very low wear rates. They allowed the use of large metal heads and articulations, thereby improving range of motion and stability. Concerns always existed regarding the production of metal ions and the potential for metal hypersensitivity, as well as possible systemic effects. Metal hypersensitivity remains a diagnosis of exclusion with no definitive diagnostic tests to either screen for it, or diagnose it, if suspected. Over the past few years metal-on-metal implant use has dropped significantly, to the point now in 2013, where the only remaining application is resurfacing implants in the younger male patient. Ceramic-on-ceramic bearings enjoy the lowest wear rates of all currently available hip articulations. Historically there has been concern regarding fracturing of both the inserts and the heads, although current generation ceramic-on-ceramic bearings have a much lower reported fracture rate. The phenomenon of a squeaking articulation remains a concern for both patient and surgeon. Conflicting reports exist on whether this is related to implant mal-position or is a function of the bearing itself. As with other bearings, improvements in technology continue to evolve and newer ceramics have recently been introduced and are in clinical practice. The future will continue to see the evolution of the articulation in total hip arthroplasty. Patients are undergoing total hip replacements at younger ages and clearly have higher demands than seen historically. That being said, two factors have will have a major influence on future developments. The tremendous clinical success of highly cross-linked polyethylene should have us all question the need for significant changes in bearing material and the current environment following the multiple issues with metal-on-metal is one of evolutionary, rather than revolutionary, design and introduction


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 64 - 64
1 May 2016
Campbell P Nguyen M Priestley E
Full Access

The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded modular connections. We reviewed the evaluation and reporting of local tissue reactions over time, and asked if a dose response has been found between metal and tissue features, and how the use of more standardized terms and quantitative methodologies could reduce the current confusion in terminology. Methods. The PubMed database was searchedbetween 2000 and 2015 for papers using “metal sensitivity /allergy /hypersensitivity, Adverse Local Tissue Reaction (ALTR): osteolysis, metallosis, lymphocytic infiltration, Aseptic Lymphocytic Vasculitis-Associated Lesions (ALVAL), Adverse Reaction to Metal Debris (ARMD) or pseudotumor/ pseudotumour” as well as metal-on-metal / metal-metal AND hip arthroplasty/replacement. Reports lacking soft tissue histological analysis were excluded. Results. 131 articles describing M-M tissue histology were found. In earlier studies, the terms metal sensitivity / hypersensitivity /allergy implied or stated the potential for a Type IV delayed type hypersensitivity response as a reason for revision. More recently those terms have largely been replaced by broader terms such as ALTR, ALVAL and ARMD. ALVAL and metal hypersensitivity were often used interchangeably, both as failure modes and histological findings. Several histology scoring systems have been published but were only used in a limited number of studies. Correlations of histological features with metal levels or component wear were inconclusive, typically because of a high degree of variability. Interestingly, there were very few descriptions that concluded that the observed reactions were benign / normal or anticipated i.e. regardless of the histological features, extent of debris or failure mode, the histology was interpreted as showing an adverse reaction. Discussion. There is now an expanded set of terms to describe tissues but they lack clear definitions and typically do not use quantitative histological data to describe a wide range of periprosthetic reactions to metal. Lower limits of inflammation, necrosis or re-organization that represent a “normal” reaction to surgery and/or small amounts of wear debris are not clearly defined and are rarely discussed. The widespread adoption of the term “adverse” in the present tissue lexicon implies a cause and effect relationship between metal wear and corrosion products and histological features even though this has yet to be determined. The use of quantitative histological scores rather than subjective histological descriptions is imperative to improve the understanding and reporting of the range of periprosthetic reactions. In particular, a new lexicon that allows for a level of tissue reaction that is not misinterpreted as adverse is required


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 11 - 11
1 Apr 2017
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location, which is also the location that confers perhaps the greatest clinical utility. The benefits of increased clinical options at that location must be weighed against the potential risks of adding an additional junction to the construct. Those risks include prosthetic neck fracture, taper corrosion, metal hypersensitivity, and adverse local tissue reaction. Further, in-vitro testing of ultimate or fatigue strength of femoral component designs has repeatedly failed to predict behavior in-vivo, raising questions about the utility of in-vitro testing that does not incorporate the effect of mechanically assisted crevice corrosion into the test design. The material properties of Ti alloy and CoCr alloy place limits on design considerations in the proximal femur. The smaller taper junctions that are necessary for primary reconstruction are particularly vulnerable to failure whereas larger taper junctions commonly used in revision modular femoral component designs have greater opportunity for success. Modular junctions of CoCr alloy on conventional Ti alloy have been shown to have a greater incidence of clinically significant mechanically assisted crevice corrosion and adverse reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions, that extend into the metaphysis of the femur. While these designs are primarily designed for revision total hip replacement (THR), they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use of modular neck components for primary THR does not appear to be clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for revision THR and rare primary THR with extreme version or other anatomical circumstances


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 34 - 34
1 Nov 2015
Meneghini R
Full Access

There are a multitude of choices and implant varieties for primary total knee arthroplasty (TKA). TKA implant systems differ in a number of design characteristics intended to either improve performance through optimizing kinematic function (such as the medial pivot, mobile bearing, gender-specific or high-flexion designs) or by increasing the durability of the TKA by minimizing long-term failure modes, such as wear and osteolysis with highly cross-linked polyethylene. Further adding to the complexity of choice, is the re-emergence of cementless fixation in response to improve longevity in the progressively younger TKA patient population. The patella creates additional decision-making in TKA, as while most surgeons in the US resurface the patella, there are some who routinely do not which is a much more commonly accepted practice outside of the US. Finally, metal hypersensitivity is a controversial, yet unavoidable issue, which forces the consideration of “nickel-free” or ceramic-coated implants. Unfortunately, there is paucity of outcome data to support one implant choice over another, which is problematic in the modern arena of value-based cost reductions in healthcare. Further confounding the issue is the inability of current outcome measures to accurately assess the differences in performance of the various TKA designs. This talk will provide the latest evidence particular to the major TKA component choices as they relate to patient pathology


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 5 - 5
1 Dec 2016
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location which is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our total hip replacement (THR) patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and adverse local tissue reaction (ALTR). However, the risks of failing to properly reconstruct the hip without neck modularity must be weighed against the additional risks introduced by neck modularity. There are several critical design, material, and technique variables that are directly associated with higher or lower incidences of problems associated with modular neck femoral components. Unfortunately, in vitro testing of the fatigue strength of these constructs has failed to predict their behavior in vivo. Designs predicted to tolerate loads that far exceed those experienced in vivo still fail at unacceptably high rates. Titanium alloy neck components subjected to the stresses at the neck-stem junction continue to fail at an unacceptable incidence. CoCr alloy neck components, while theoretically stronger, still fracture and are further compromised by mechanically assisted crevice corrosion, metal hypersensitivity, and rarely, adverse tissue reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions that extend into the metaphysis of the femur. While these designs are primarily designed for revision THR, they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use for primary THR does not appear clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for extreme version or anatomical circumstances


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 53 - 53
1 Dec 2016
Senay A Benderdour M Laflamme G Ranger P Shi Q Delisle J Fernandes J
Full Access

Total joint arthroplasty has proven to be efficient to relieve pain and regain mobility. In fact, most patients undergoing a total knee arthroplasty (TKA) are satisfied with their surgery (80 to 90%), yet 4 to 7% still complain of unexplainable pain and stiffness. Several authors have proposed that reactivity to the implant could explain this phenomenon. Still, no strong evidence supports this theory as of today. We aimed to determine the prevalence of metal and cement hypersensitivity in a cohort of patients with unexplained pain and stiffness after TKA. We retrieved data for a group of patients presenting unexplained pain and stiffness. We excluded all other potential known causes of pain. All patients were tested with a Lymphocyte Transformation Test from whole blood taps. We analysed data of hypersensitivity to metals (alloy particles of titanium and cobalt, aluminum, cobalt, nickel, zirconium, vanadium, molybdenum, cobalt, chromium and iron) and PMMA cement (bone cement monomer and particles). Fifty-three patients underwent a LTT for unexplained pain and stiffness after total knee arthroplasty between May 2012 and May 2015. The cohort consisted of 26 men and 27 women with a mean age of 66.3(±8.0) years. Six patients had no hypersensitivity (11.3%), leaving 88.7% of the cohort with hypersensitivity to metal and/or cement. Almost half the cohort of patients tested for PMMA was hypersensitive to cement (44.0%). The most common metal hypersensitivity was nickel (69.8%). Twelve patients presented sensitivity to only one metal (22.6%), whereas 35 patients were hypersensitive to more than one metal (66.0%). Eleven patients had revision surgery with a hypoallergenic prosthesis. Patients reported a significant diminution of pain as well as better knee function compared to preoperative status as early as 6 weeks postop, although some reported residual stiffness. The results of this study suggest that metal and/or cement hypersensitivity could play a role in cases of total knee arthroplasty with unexplained pain and stiffness. Randomised controlled clinical trials on the subject will be initiated by our team to further investigate this phenomenon


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 15 - 15
1 May 2016
Sasaki T Kodama T Ogawa Y
Full Access

Introduction. In recent years, an increasing number of reports related to adverse reactions to metal debris (ARMD) following metal-on-metal (MOM) total hip arthroplasty (THA) have been published. Some patients who experience ARMD require revision surgery. Objectives. In this study, we aimed to evaluate the mid-term results of MOM THA. Methods. We retrospectively reviewed all patients who underwent THA at JCHO Saitama medical center from January 2007 to December 2010. A metal liner and metal femoral head were used in 37 of 214 cases (17%). This sub-group comprised 2 men and 35 women (mean age at surgery, 63.5 years; range, 39–79 years). The original disease is 28 osteoarthritis, 5 osteonecrosis, 3 rheumatoid arthritis and 1 rapidly destructive hip coxarthropathy. We investigated the system type, size (cup, femoral head, and stem), and cup position (anteversion and inclination). Moreover, we used imaging (radiography and computed tomography [CT] or magnetic resonance imaging [MR]) to assess for aseptic loosening, metal hypersensitivity reactions, and pseudotumor formation. Results. Six women with osteoarthritis experienced significant localized soft tissue reactions, and underwent revision. The average duration to revision was 41months(range, 28–63). Of these, 4 patients had received the PINNACLE cup system (Depuy; 4/14, 28.6%) and 2 had received the M2a-Taper cup system (BIOMET; 2/23, 8.7%). The femoral head sizes of the PINNACLE system used was 36 mm, and the femoral head sizes of the M2q-Taper systems used were 28mm and 32mm. Four patients had no signs or symptoms, 1 patient complained of anterior thigh dullness and 1 patient had a dislocation. The average cup anteversion was 15.7 degrees (range, 10–19 degrees) and the average inclination was 49.2 degrees (range, 43–57 degrees). Conclusions. MOM THA was associated with a higher incidence of revision. The majority of cases that required revision had no severe signs or symptoms. Therefore, all cases of MOM THA should be assessed periodically using CT or MRI