Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Bone & Joint Research
Vol. 4, Issue 3 | Pages 45 - 49
1 Mar 2015
Thompson MJ Ross J Domson G Foster W

Objectives. The clinical utility of routine cross sectional imaging of the abdomen and pelvis in the screening and surveillance of patients with primary soft-tissue sarcoma of the extremities for metastatic disease is controversial, based on its questionable yield paired with concerns regarding the risks of radiation exposure, cost, and morbidity resulting from false positive findings. Methods. Through retrospective review of 140 patients of all ages (mean 53 years; 2 to 88) diagnosed with soft-tissue sarcoma of the extremity with a mean follow-up of 33 months (0 to 291), we sought to determine the overall incidence of isolated abdominopelvic metastases, their temporal relationship to chest involvement, the rate of false positives, and to identify disparate rates of metastases based on sarcoma subtype. Results. A total of four patients (2.9%) exhibited isolated abdominopelvic metastatic disease during the surveillance period. In all cases of concomitant chest and abdominopelvic disease, chest involvement preceded abominopelvic involvement. There was a significant false positive rate requiring invasive workup. Conclusions. In the setting of a relative paucity of evidence concerning a rare disease process and in difference to recently published investigations, we add a clinical cohort not supportive of routine cross sectional imaging of the abdomen and pelvis. Cite this article: Bone Joint Res 2015;4:45–9


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 34 - 34
1 Dec 2022
Cavazzoni G Cristofolini L Barbanti-Bròdano G Dall'Ara E Palanca M
Full Access

Bone metastases radiographically appear as regions with high (i.e. blastic metastases) or low (i.e. lytic metastases) bone mineral density. The clinical assessment of metastatic features is based on computed tomography (CT) but it is still unclear if the actual size of the metastases can be accurately detected from the CT images and if the microstructure in regions surrounding the metastases is altered (Nägele et al., 2004, Calc Tiss Int). This study aims to evaluate (i) the capability of the CT in evaluating the metastases size and (ii) if metastases affect the bone microstructure around them. Ten spine segments consisted of a vertebra with lytic or mixed metastases and an adjacent control (radiologically healthy) were obtained through an ethically approved donation program. The specimens were scanned with a clinical CT (AquilionOne, Toshiba: slice thickness:1mm, in-plane resolution:0.45mm) to assess clinical metastatic features and a micro-CT (VivaCT80, Scanco, isotropic voxel size:0.039mm) to evaluate the detailed microstructure. The volume of the metastases was measured from both CT and micro-CT images (Palanca et al., 2021, Bone) and compared with a linear regression. The microstructural alteration around the metastases was evaluated in the volume of interest (VOI) defined in the micro-CT images as the volume of the vertebral body excluding the metastases. Three 3D microstructural parameters were calculated in the VOI (CTAn, Bruker SkyScan): Bone Volume Fraction (BV/TV), Trabecular Thickness (Tb.Th.), Trabecular Spacing (Tb.Sp.). Medians of each parameter were compared (Kruskal-Wallis, p=0.05). One specimen was excluded as it was not possible to define the size of the metastases in the CT scans. A strong correlation between the volume obtained from the CT and micro-CT images was found (R2=0.91, Slope=0.97, Intercept=2.55, RMSE=5.7%, MaxError=13.12%). The differences in BV/TV, Tb.Th. and Tb.Sp. among vertebrae with lytic and mixed metastases and control vertebrae were not statistically significant (p-value>0.6). Similar median values of BV/TV were found in vertebrae with lytic (13.2±2.4%) and mixed (12.8±9.8%) metastases, and in controls (13.0±10.1%). The median Tb.Th. was 176±18 ∓m, 179±43 ∓m and 167±91 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. The median Tb. Sp. was 846±26 ∓m, 849±286 ∓m and 880±116 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. In conclusion, the size of vertebral metastases can be accurately assess using CT images. The 3D microstructural parameters measured were comparable with those reported in the literature for healthy vertebrae (Nägele et al., 2004, Calc Tiss Int, Sone et al., 2004, Bone) and showed how the microstructure of the bone tissue surrounding the lesion is not altered by the metastases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 42 - 42
2 Jan 2024
Oliveira V
Full Access

Primary bone tumors are rare, complex and highly heterogeneous. Its diagnostic and treatment are a challenge for the multidisciplinary team. Developments on tumor biomarkers, immunohistochemistry, histology, molecular, bioinformatics, and genetics are fundamental for an early diagnosis and identification of prognostic factors. The personalized medicine allows an effective patient tailored treatment. The bone biopsy is essential for diagnosis. Treatment may include systemic therapy and local therapy. Frequently, a limb salvage surgery includes wide resection and reconstruction with endoprosthesis, biological or composites. The risk for local recurrence and distant metastases depends on the primary tumor and treatment response. Cancer patients are living longer and bone metastases are increasing. Bone is the third most frequently location for distant lesions. Bone metastases are associated to pain, pathological fractures, functional impairment, and neurological deficits. It impacts survival and patient quality of life. The treatment of metastatic disease is a challenge due to its complexity and heterogeneity, vascularization, reduced size and limited access. It requires a multidisciplinary treatment and depending on different factors it is palliative or curative-like treatment. For multiple bone metastases it is important to relief pain and increases function in order to provide the best quality of life and expect to prolong survival. Advances in nanotechnology, bioinformatics, and genomics, will increase biomarkers for early detection, prognosis, and targeted treatment effectiveness. We are taking the leap forward in precision medicine and personalized care


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 133 - 133
2 Jan 2024
Graziani G
Full Access

Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with bone substitutes. Functionalization of these substitutes with antitumor and antibacterial compounds could constitute a promising approach to overcome infection and tumor at one same time. Here, for the first time, we propose the use of nanostructured zinc-bone apatite coatings having antitumor and antimicrobial efficacy. The coatings are obtained by Ionized Jet Deposition from composite targets of zinc and bovine-derived bone apatite. Antibacterial and antibiofilm efficacy of the coatings is demonstrated in vitro against S. Aureus and E. Coli. Anti-tumor efficacy is investigated against MDA- MB-231 cells and biocompatibility is assessed on L929 and MSCs. A microfluidic based approach is used to select the optimal concentration of zinc to be used to obtain antitumor efficacy and avoid cytotoxicity, exploiting a custom gradient generator microfluidic device, specifically designed for the experiments. Then, coatings capable of releasing the desired amount of active compounds are manufactured. Films morphology, composition and ion-release are studies by FEG- SEM/EDS, XRD and ICP. Efficacy and biocompatibility of the coatings are verified by investigating MDA, MSCs and L929 viability and morphology by Alamar Blue, Live/Dead Assay and FEG-SEM at different timepoints. Statistical analysis is performed by SPSS/PC + Statistics TM 25.0 software, one-way ANOVA and post-hoc Sheffe? test. Data are reported as Mean ± standard Deviation at a significance level of p <0.05. Results and Discussion. Coatings have a nanostructured surface morphology and a composition mimicking the target. They permit sustained zinc release for over 14 days in medium. Thanks to these characteristics, they show high antibacterial ability (inhibition of bacteria viability and adhesion to substrate) against both the gram + and gram – strain. The gradient generator microfluidic device permits a fine selection of the concentration of zinc to be used, with many potential perspectives for the design of biomaterials. For the first time, we show that zinc and zinc-based coatings have a selective efficacy against MDA cells. Upon mixing with bone apatite, the efficacy is maintained and cytotoxicity is avoided. For the first time, new antibacterial metal-based films are proposed for addressing bone metastases and infection at one same time. At the same time, a new approach is proposed for the design of the coatings, based on a microfluidic approach. We demonstrated the efficacy of Zn against the MDA-MB-231 cells, characterized for their ability to form bone metastases in vivo, and the possibility to use nanostructured metallic coatings against bone tumors. At the same time, we show that the gradient-generator approach is promising for the design of antitumor biomaterials. Efficacy of Zn films must be verified in vivo, but the dual-efficacy coatings appear promising for orthopedic applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 59 - 59
14 Nov 2024
Cristofolini L bròdano BB Dall’Ara E Ferenc R Ferguson SJ García-Aznar JM Lazary A Vajkoczy P Verlaan J Vidacs L
Full Access

Introduction. Patients (2.7M in EU) with positive cancer prognosis frequently develop metastases (≈1M) in their remaining lifetime. In 30-70% cases, metastases affect the spine, reducing the strength of the affected vertebrae. Fractures occur in ≈30% patients. Clinicians must choose between leaving the patient exposed to a high fracture risk (with dramatic consequences) and operating to stabilise the spine (exposing patients to unnecessary surgeries). Currently, surgeons rely on their sole experience. This often results in to under- or over-treatment. The standard-of-care are scoring systems (e.g. Spine Instability Neoplastic Score) based on medical images, with little consideration of the spine biomechanics, and of the structure of the vertebrae involved. Such scoring systems fail to provide clear indications in ≈60% patients. Method. The HEU-funded METASTRA project is implemented by biomechanicians, modellers, clinicians, experts in verification, validation, uncertainty quantification and certification from 15 partners across Europe. METASTRA aims to improve the stratification of patients with vertebral metastases evaluating their risk of fracture by developing dedicated reliable computational models based on Explainable Artificial Intelligence (AI) and on personalised Physiology-based biomechanical (VPH) models. Result. The METASTRA-AI model is expected to be able to stratify most patients with limited effort end cost, based on parameters extracted semi-automatically from the medical files and images. The cases which are not reliably stratified through the AI model, are examined through a more detailed and personalised biomechanical VPH model. These METASTRA numerical tools are trained through an unprecedentedly large multicentric retrospective study (2000 cases) and validated against biomechanical ex vivo experiments (120 specimens). Conclusion. The METASTRA decision support system is tested in a multicentric prospective observational study (200 patients). The METASTRA approach is expected to cut down the indeterminate diagnoses from the current 60% down to 20% of cases. METASTRA project funded by the European Union, HEU topic HLTH-2022-12-01, grant 101080135


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 40 - 40
1 Dec 2022
Lipreri M Vecchione R Corrado B Avnet S Perut F Baldini N Graziani G
Full Access

Vertebral metastases are the most common type of malignant lesions of the spine. Although this tumour is still considered incurable and standard treatments are mainly palliative, the standard approach consists in surgical resection, which results in the formation of bone gaps. Hence, scaffolds, cements and/or implants are needed to fill the bone lacunae. Here, we propose a novel approach to address spinal metastases recurrence, based on the use of anti-tumour metallic-based nanostructured coatings. Moreover, for the first time, a gradient microfluidic approach is proposed for the screening of nanostructured coatings having anti-tumoral effect, to determine the optimal concentration of the metallic compound that permits selective toxicity towards tumoral cells. Coatings are based on Zinc as anti-tumour agent, which had been never explored before for treatment of bone metastases. The customized gradient generating microfluidic chip was designed by Autodesk Inventor and fabricated from a microstructured mould by using replica moulding technique. Microstructured mould were obtained by micro-milling technique. The chip is composed of a system of microfluidic channels generating a gradient of 6 concentrations of drug and a compartment with multiple arrays of cell culture chambers, one for each drug concentration. The device is suitable for dynamic cultures and in-chip biological assays. The formation of a gradient was validated using a methylene blue solution and the cell loading was successful. Preliminary biological data on 3D dynamic cultures of stromal cells (bone-marrow mesenchymal stem cells) and breast carcinoma cells (MDA-MB-231) were performed in a commercial microfluidic device. Results showed that Zn eluates had a selective cytotoxic effect for tumoral cells. Indeed, cell migration and cell replication of treated tumoral cells was inhibited. Moreover, the three-dimensionality of the model strongly affected the efficacy of Zn eluates, as 2D preliminary experiments showed a high cytotoxic effect of Zn also for stromal cells, thus confirming that traditional screening tests on 2D cultured cells usually lead to an overestimation of drug efficacy and toxicity. Based on preliminary data, the customized platform could be considered a major advancement in cancer drug screenings as it also allows the rapid and efficient screening of biomaterials having antitumor effect


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 37 - 37
1 Dec 2022
Contartese D Salamanna F Borsari V Pagani S Sartori M Martini L Brodano GB Gasbarrini A Fini M
Full Access

Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3, ESR1, CD8 and CD68 between T0 and T40, thus further confirming the invasive behaviour of breast cancer cells and indicating the maintaining of the metastatic microenvironment. The novel tissue culture, set-up in this study, has significant advantages in comparison to the pre-existent 3D models: the tumour environment is the same of the clinical scenario, including all cell types as well as the native extracellular matrix; it can be quickly set-up employing only small samples of breast cancer bone metastasis tissue in a simple, ethically correct and cost-effective manner; it bypasses and/or decreases the necessity to use more complex preclinical model, thus reducing the ethical burden following the guiding principles aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes; it can allow the study of the interactions within the breast cancer bone metastasis tissue over a relatively long period of up to 40 days, preserving the tumour morphology and architecture and allowing also the evaluation of different biological factors, parameters and activities. Therefore, the study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 73 - 73
4 Apr 2023
Tolgyesi A Huang C Akens M Hardisty M Whyne C
Full Access

Bone turnover and microdamage are impacted by skeletal metastases which can contribute to increased fracture risk. Treatments for metastatic disease may further impact bone quality. This study aimed to establish an understanding of microdamage accumulation and load to failure in healthy and osteolytic vertebrae following cancer treatment (stereotactic body radiotherapy (SBRT), zoledronic acid (ZA), or docetaxel (DTX)). Forty-two 6-week old athymic female rats (Hsd:RH-Foxn1rnu, Envigo) were studied; 22 were inoculated with HeLa cervical cancer cells through intracardiac injection (day 0). Animals were randomly assigned to four groups: untreated (healthy=5, osteolytic=6), SBRT on day 14 (healthy=6, osteolytic=6), ZA on day 7 (healthy=4, osteolytic=5), and DTX on day 14 (healthy=5, osteolytic=5). Animals were euthanized on day 21. L1-L3 motion segments were compression loaded to failure and force-displacement data recorded. T13 vertebrae were stained with BaSO. 4. and µCT imaged (90kVp, 44uA, 4.9µm) to visualize microdamage location and volume. Damage volume fraction (DV/BV) was calculated as the ratio of BaSO. 4. to bone volume. Differences in mean load-to-failure were compared using three-way ANOVA (disease status, treatment, cells injected). Differences in mean DV/BV between treatment groups were compared using one-way ANOVA. Treatment had a significant effect on load-to-failure (p=0.004) with ZA strengthening the healthy and osteolytic vertebrae. Reduced strength post SBRT seen in the metastatic (but not the healthy) group may be explained by greater tumor involvement secondary to higher cell injection concentrations. Untreated metastatic samples had higher DV/BV (16.25±2.54%) compared to all treatment groups (p<0.05) suggesting a benefit of treatment to bone quality. Focal and systemic cancer treatments were shown to effect load-to-failure and microdamage accumulation in healthy and osteolytic vertebrae. Developing a better understanding of how treatments effect bone quality and mechanical stability is critical for effective management of patients with spinal metastases


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 125 - 125
1 Mar 2021
Eggermont F van der Wal G Westhoff P Laar A de Jong M Rozema T Kroon HM Ayu O Derikx L Dijkstra S Verdonschot N van der Linden YM Tanck E
Full Access

Patients with cancer and bone metastases can have an increased risk of fracturing their femur. Treatment is based on the impending fracture risk: patients with a high fracture risk are considered for prophylactic surgery, whereas low fracture risk patients are treated conservatively with radiotherapy to decrease pain. Current clinical guidelines suggest to determine fracture risk based on axial cortical involvement of the lesion on conventional radiographs, but that appears to be difficult. Therefore, we developed a patient-specific finite element (FE) computer model that has shown to be able to predict fracture risk in an experimental setting and in patients. The goal of this study was to determine whether patient-specific finite element (FE) computer models are better at predicting fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines. 45 patients (50 affected femurs) affected with predominantly lytic bone metastases who were treated with palliative radiotherapy for pain were included. CT scans were made and patients were followed for six months to determine whether or not they fractured their femur. Non-linear isotropic FE models were created with the patient-specific geometry and bone density obtained from the CT scans. Subsequently, an axial load was simulated on the models mimicking stance. Failure loads normalized for bodyweight (BW) were calculated for each femur. High and low fracture risks were determined using a failure load of 7.5 × BW as a threshold. Experienced assessors measured axial cortical involvement on conventional radiographs. Following clinical guidelines, patients with lesions larger than 30 mm were identified as having a high fracture risk. FE predictions were compared to clinical assessments by means of diagnostic accuracy values (sensitivity, specificity and positive (PPV) and negative predictive values (NPV)). Seven femurs (14%) fractured during follow-up. Median time to fracture was 8 weeks. FE models were better at predicting fracture risk in comparison to clinical assessments based on axial cortical involvement (sensitivity 100% vs. 86%, specificity 74% vs. 42%, PPV 39% vs. 19%, and NPV 100% vs. 95%, for the FE computer model vs. axial cortical involvement, respectively). We concluded that patient-specific FE computer models improve fracture risk predictions of femoral bone metastases in advanced cancer patients compared to clinical assessments based on axial cortical involvement, which is currently used in clinical guidelines. Therefore, we are initiating a pilot for clinical implementation of the FE model


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 131 - 131
2 Jan 2024
Vadalà G
Full Access

Infections are among the most diffused complications of the implantation of medical devices. In orthopedics, they pose severe societal and economic burden and interfere with the capability of the implants to integrate in the host bone, significantly increasing failure risk. Infection is particularly severe in the case of comorbidities and especially bone tumors, since oncologic patients are fragile, have higher infection rate and impaired osteoregenerative capabilities. For this reason, prevention of infection is to be preferred over treatment. This is even more important in the case of spine surgery, since spine is among the main site for tumor metastases and because incidence of post operative surgical-site infections is significant (up to 15-20%) and surgical options are limited by the need of avoiding damaging the spinal cord. Functionalization of the implant surfaces, so as to address infection and, possibly, co- adjuvate anti-tumor treatments, appears as a breakthrough innovation. Unmet clinical needs in infection and tumors is presented, with a specific focus on the spine, then, new perspectives are highlighted for their treatment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 77 - 77
1 Mar 2021
Ataei A Eggermont F Baars M Linden Y Rooy J Verdonschot N Tanck E
Full Access

Patients with advanced cancer can develop bone metastases in the femur which are often painful and increase the risk of pathological fracture. Accurate segmentation of bone metastases is, amongst others, important to improve patient-specific computer models which calculate fracture risk, and for radiotherapy planning to determine exact radiation fields. Deep learning algorithms have shown to be promising to improve segmentation accuracy for metastatic lesions, but require reliable segmentations as training input. The aim of this study was to investigate the inter- and intra-operator reliability of manual segmentation of femoral metastatic lesions and to define a set of lesions which can serve as a training dataset for deep learning algorithms. F. CT-scans of 60 advanced cancer patients with a femur affected with bone metastases (20 osteolytic, 20 osteoblastic and 20 mixed) were used in this study. Two operators were trained by an experienced radiologist and then segmented the metastatic lesions in all femurs twice with a four-week time interval. 3D and 2D Dice coefficients (DCs) were calculated to quantify the inter- and intra-operator reliability of the segmentations. We defined a DC>0.7 as good reliability, in line with a statistical image segmentation study. Mean first and second inter-operator 3D-DCs were 0.54 (±0.28) and 0.50 (±0.32), respectively. Mean intra-operator I and II 3D-DCs were 0.56 (±0.28) and 0.71 (±0.23), respectively. Larger lesions (>60 cm. 3. ) scored higher DCs in comparison with smaller lesions. This study reveals that manual segmentation of metastatic lesions is challenging and that the current manual segmentation approach resulted in dissatisfying outcomes, particularly for lesions with small volumes. However, segmentation of larger lesions resulted in a good inter- and intra-operator reliability. In addition, we were able to select 521 slices with good segmentation reliability that can be used to create a training dataset for deep learning algorithms. By using deep learning algorithms, we aim for more accurate automated lesion segmentations which might be used in computer modelling and radiotherapy planning


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 26 - 26
1 Dec 2022
Salamanna F Contartese D Borsari V Griffoni C Brodano GB Gasbarrini A Fini M
Full Access

The Spine Surgery Unit of IRCCS Istituto Ortopedico Rizzoli is dedicated to the diagnosis and the treatment of vertebral pathologies of oncologic, degenerative, and post-traumatic origin. To achieve increasingly challenging goals, research has represented a further strength for Spinal Surgery Unit for several years. Thanks to the close synergy with the Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, extensive research was carried out. The addition of the research activities intensifies a complementary focus and provides a unique opportunity of innovation. The overall goal of spine research for the Spine Surgery Unit and for the Complex Structure Surgical Sciences and Technologies is and has been to:. - investigate the factors that influence normal spine function;. - engineer and validate new and advanced strategies for improving segmental spinal instrumentation, fusion augmentation and grafting;. - develop and characterize advanced and alternative preclinical models of vertebral bone metastasis to test drugs and innovative strategies, taking into account patient individual characteristics and specific tumour subtypes so predicting patient specific responses;. - evaluate the clinical characteristics, treatment modalities, and potential contributing and prognostic factors in patients with vertebral bone metastases;. - realize customized prosthesis to replace vertebral bodies affected by tumours or major traumatic events, specifically engineered to reduce infections, and increase patients’ surgical options. These efforts have made possible to obtain important results that favour the translation of basic research to application at the patient's bedside, and from here to routine clinical practice (without excluding the opposite pathway, in which the evidence generated by clinical practice helps to guide research). Although translational research can provide patients with valuable therapeutic resources, it is not risk-free. Thus, it is therefore necessary an always close collaboration between researchers and clinicians in order to guarantee the ethicality of translational research, by promoting the good of individuals and minimising the risks


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 2 - 2
1 Dec 2022
Pitton M Pellegatta D Vandoni D Graziani G Farè S
Full Access

The in vitro mimicking of bone microenvironment for the study of pathologies is a challenging field that requires the design of scaffolds with suitable morphological, structural and cytocompatible properties. During last years, 3D in vitro tumour models have been developed to reproduce mechanical, biochemical and structural bone microenvironment elements, allowing cells to behave as in vivo. In this work, gas foamed polyether urethane foams (PUF) and 3D printed thermoplastic polyether urethane (3DP-PU) designed with different patterns are proposed as scaffolds for in vitro model of bone tissue. Surface coatings for a biomimetic behaviour of the 3D scaffold models were also investigated. Morphological, chemico-physical, mechanical properties, and biological in vitro behaviour were investigated. PUFs for metastases investigation. The suitability of PUF as 3D in vitro model to study the interactions between bone tumour initiating cells and the bone microenvironment was investigated. PUF open porosity (>70%) appeared suitable to mimic trabecular bone structure. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as confirmed by Alizarin Red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with bone derived tumour-initiating cells (MCFS). Tumour aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumour cells. 3DP-PU as tumour bone model. 3D printed scaffolds have pores with a precise and regular geometry (0°-90°, 0°-45°-90°-135°, 0°-60°-120°). PU scaffold porosity evidenced values from 55 to 67%, values that belong to the porosity range of the trabecular bone tissue (30-90%). The compressive modulus varied between 2 and 4 MPa, depending on the printed pattern. Biomimetic nanostructured coating was performed on 0-90° 3DP-PU by Ionized Jet Deposition. Coatings had a submicrometric thickness, variable tuning deposition time, nanostructured surface morphology and biomimetic composition. Coating on 3DP-PU promoted cells colonization of the whole porous scaffolds, compared to the controls, where cells concentrated mostly on the outer layers. In conclusion, based on the obtained results, scaffolds with different geometries have been successfully produced. Morphological and structural properties of the scaffolds here presented are suitable for mimicking the bone tissue, in order to produce a 3D in vitro model useful for bone pathologies research


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 27 - 27
1 Dec 2022
Ghermandi R
Full Access

Spinal surgery deals with the treatment of different pathological conditions of the spine such as tumors, deformities, degenerative disease, infections and traumas. Research in the field of vertebral surgery can be divided into two main areas: 1) research lines transversal to the different branches; 2) specific research lines for the different branches. The transversal lines of research are represented by strategies for the reduction of complications, by the development of minimally invasive surgical techniques, by the development of surgical navigation systems and by the development of increasingly reliable systems for the control of intra-operative monitoring. Instead, specific lines of research are developed within the different branches. In the field of oncological pathology, the current research concerns the development of in vitro models for the study of metastases and research for the study of targeted treatment methods such as electrochemotherapy and mesenchymal stem cells for the treatment of aneurysmal bone cysts. Research in the field of spinal deformities is focused on the development of increasingly minimally invasive methods and systems which, combined with appropriate pharmacological treatments, help reduce trauma, stress and post-operative pain. Scaffolds based on blood clots are also being developed to promote vertebral fusion, a fundamental requirement for improving the outcome of vertebral arthrodesis performed for the treatment of degenerative disc disease. To improve the management and the medical and surgical treatment of vertebral infections, research has focused on the definition of multidisciplinary strategies aimed at identifying the best possible treatment path. Thus, flow-charts have been created which allow to manage the patient suffering from vertebral infection. In addition, dedicated silver-coated surgical instrumentation and bone substitutes have been developed that simultaneously guarantee mechanical stability and reduce the risk of further local infection. In the field of vertebral traumatology, the most recent research studies have focused on the development of methods for the biostimulation of the bone growth in order to obtain, when possible, healing without surgery. Methods have also been developed that allow the minimally invasive percutaneous treatment of fractures by means of vertebral augmentation with PMMA, or more recently with the use of silicone which from a biomechanical point of view has an elastic modulus more similar to that of bone. It is clear that scientific research has changed clinical practice both in terms of medical and surgical management of patients with spinal pathologies. The results obtained stimulate the basic research to achieve even more. For this reason, new lines of research have been undertaken which, in the oncology field, aim at developing increasingly specific therapies against target receptors. Research efforts are also being multiplied to achieve regeneration of the degenerated intervertebral disc and to develop implants with characteristics increasingly similar to those of bone in order to improve mechanical stability and durability over time. Photodynamic therapies are being developed for the treatment of infections in order to reduce the use of antibiotic therapies. Finally, innovative lines of research are being launched to treat and regenerate damaged nerve structures with the goal, still far from today, of making patients with spinal cord injuries to walk


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 15 - 15
1 Dec 2022
Graziani G Ghezzi D Sartori M Fini M Perut F Montesissa M Boi M Cappelletti M Sassoni E Di Pompo G Giusto E Avnet S Monopoli D Baldini N
Full Access

Infection in orthopedics is a challenge, since it has high incidence (rates can be up to 15-20%, also depending on the surgical procedure and on comorbidities), interferes with osseointegration and brings severe complications to the patients and high societal burden. In particular, infection rates are high in oncologic surgery, when biomedical devices are used to fill bone gaps created to remove tumors. To increase osseointegration, calcium phosphates coatings are used. To prevent infection, metal- and mainly silver-based coatings are the most diffused option. However, traditional techniques present some drawbacks, including scarce adhesion to the substrate, detachments, and/or poor control over metal ions release, all leading to cytotoxicity and/or interfering with osteointegration. Since important cross-relations exist among infection, osseointegration and tumors, solutions capable of addressing all would be a breakthrough innovation in the field and could improve clinical practice. Here, for the first time, we propose the use antimicrobial silver-based nanostructured thin films to simultaneously discourage infection and bone metastases. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture. These characteristics, in turn, allow tuning silver release and avoid delamination, thus preventing toxicity. In addition, to mitigate interference with osseointegration, here silver composites with bone apatite are explored. Indeed, capability of bone apatite coatings to promote osseointegration had been previously demonstrated in vitro and in vivo. Here, antibacterial efficacy and biocompatibility of silver-based films are tested in vitro and in vivo. Finally, for the first time, a proof-of-concept of antitumor efficacy of the silver-based films is shown in vitro. Coatings are obtained by silver and silver-bone apatite composite targets. Both standard and custom-made (porous) vertebral titanium alloy prostheses are used as substrates. Films composition and morphology depending on the deposition parameters are investigated and optimized. Antibacterial efficacy of silver films is tested in vitro against gram+ and gram- species (E. coli, P. aeruginosa, S. aureus, E. faecalis), to determine the optimal coatings characteristics, by assessing reduction of bacterial viability, adhesion to substrate and biofilm formation. Biocompatibility is tested in vitro on fibroblasts and MSCs and, in vivo on rat models. Efficacy is also tested in an in vivo rabbit model, using a multidrug resistant strain of S. aureus (MRSA, S. aureus USA 300). Absence of nanotoxicity is assessed in vivo by measuring possible presence of Ag in the blood or in target organs (ICP-MS). Then, possible antitumor effect of the films is preliminary assessed in vitro using MDA-MB-231 cells, live/dead assay and scanning electron microscopy (FEG-SEM). Statistical analysis is performed and data are reported as Mean ± standard Deviation at a significance level of p <0.05. Silver and silver-bone apatite films show high efficacy in vitro against all the tested strains (complete inhibition of planktonic growth, reduction of biofilm formation > 50%), without causing cytotoxicity. Biocompatibility is also confirmed in vivo. In vivo, Ag and Ag-bone apatite films can inhibit the MRSA strain (>99% and >86% reduction against ctr, respectively). Residual antibacterial activity is retained after explant (at 1 month). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 580 - 585
1 Apr 2010
Shido Y Nishida Y Suzuki Y Kobayashi T Ishiguro N

We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 5 - 5
1 Dec 2020
Ulucakoy C Atalay İB Yapar AE Ekşioğlu MF Kaptan AY Doğan M
Full Access

Purpose. Extraskeletal chondrosarcoma is a rare tumor with an indolent course and high propensity for local recurrence and metastasis. This tumor most commonly presents in the proximal extremities of middle-aged males, and is commonly asymptomatic. Although slow growing, these tumors have a significant risk of eventual relapse and metastases, especially to the lung. There are no clinical trials that investigated the best treatment options for this tumor given its very low incidence. The aim of this study is to present the surgical and clinical results of extraskeletal chondrosarcoma, which is a rare tumor. Methods. In our clinic, the information of 13 patients who were diagnosed with extra-skeletal chondrosarcoma between 2006 and 2018 were retrospectively reviewed. Demographic information, tumor size, surgical treatments, chemotherapy and radiotherapy status, follow-up times, recurrence and metastases of the patients were recorded. Results. This study included 13 patients with an average age of 53.6 ± 15 (range, 28 to 73) years diagnosed with extraskelatal chondrosarcoma. In 8 of the patients, the tumor was located in the lower limbs and it was observed that the thigh was located mostly (46.2%). The mean follow-up period of the patients was 52.8 ± 19.9 (range, 24 to 96) months. All patients underwent extensive resection and only one patient had a positive surgical margin. In the follow-up, 5 (38.5%) of the patients developed recurrence, while 6 patients had lung metastasis (46.2%) and 53.8% (7 patients) of the patients exitus. The mean tumor size was 10.4 ± 3.2 (range, 5 to 17) cm. The median survival time of the patients in the study was 61 (50.5–71.4) months. The 5-year survival rate is 51.8%. There was no significant difference between survival times according to age, gender, side, limb location, postoperative RT, recurrence and presence of lung metastasis (log rank tests p > 0.05). The cut off value for exitus obtained by ROC analysis of tumor size was determined as 11 cm (fig 1). Accordingly, the survival time of patients with 11 cm and above tumor size was observed to be statistically significantly shorter. Conclusion. Consequently, ECM is a rare soft tissue sarcoma with high local recurrence and metastasis capacity. Therefore, close follow-up is recommended. The first option should be extensive resection. Studies with large patient series on the prognostic factors of the future ECM are needed. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 76 - 76
1 Nov 2018
Guise T
Full Access

Breast and other cancers commonly metastasize to bone to cause bone destruction, pain, fractures hypercalcemia and muscle weakness. Recently, we described a specific molecular mechanism by which bone-derived transforming growth factor (TGF)-beta, released as a consequence of tumor-induced bone destruction causes muscle dysfunction, before the loss of muscle mass. Circulating TGF-beta induces oxidation of the ryanodine receptor (RYR1) on the sarcoplasmic reticulum of skeletal muscle to induce calcium leak and muscle weakness. Blocking TGF-beta, or its release from bone (with bisphosphonates), preventing oxidation of or stabilizing RyR1 all prevented muscle weakness in mouse models of breast cancer bone metastases. In addition to these effects on skeletal muscle, circulating TGF-beta may act on beta cells of the pancreas to impair insulin secretion and result in glucose intolerance. These and other potential systemic effects of TGF-beta released from the tumor-bone microenvironment or from cancer treatment-induced bone destruction implicate bone as a major source of systemic effects of cancer and cancer treatment. Therapy to block the systemic effects of the bone microenvironment will improve morbidity associated with bone metastases and cancer treatment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 104 - 104
1 Jan 2017
Kan C Chan Y Selvaratnam V Donnachie N
Full Access

The femur is a common site for skeletal bony metastases. The aim of this study is to evaluate the outcomes of femoral intramedullary nailing in prophylactic versus therapeutic treatment in femoral metastases. All femoral nails between April 2011 and November 2015 at a district general hospital were assessed. Intramedullary nailing performed for prophylactic or therapeutic management were included. Outcomes include mortality, survival time and length of stay in hospital. A total of 40 cases were included. In the prophylactic group there were 25 patients and in the therapeutic group there were 15 patients. In the prophylactic group, mean age was 70 years (range 41–91); male to female ratio is 23:17 and 26 patients of this group was deceased. In the therapeutic group, mean age was 76 years (range 56–92); male to female ratio 15:10 and 10 patients were deceased in this group. The most common primary was prostate carcinoma followed by breast carcinoma. In the prophylactic group, mean survival was 25 weeks (range 2–147) and in the therapeutic group mean survival was 20 weeks (range 2–39). The length of stay was 21 days (range 3–80) in the prophylactic group and 28 days (range 7–63) in the therapeutic group. Femoral nailing for metastases helps improve quality of life and we observed a mean survival time of 20–25 weeks postoperatively in both therapeutic and prophylactic nailing


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 73 - 73
1 Mar 2021
Murphy B McCabe J
Full Access

Abstract. Objective. Spinal cord surgery is a technically challenging endeavour with potentially devastating complications for patients and surgeons. Intra-operative neurophysiological monitoring(IONM), or spinal cord monitoring (SCM), is one method of preventing and identifying damage to the spinal cord. At present, indications for its use are based more on individual surgeon preference and for medico legal purposes. Our study aimed to determine IONM's utility as a clinical tool. Methods. This is a retrospective case series of 169 patients who underwent spinal surgery with IONM at two institutions between 2013 and 2018. Signal changes detected were recorded as well as the surgeon's response to these changes. Patients were followed up to one-year post-surgery using our institution's EVOLVE system. The main outcome measure in this study was new post-operative neurological signs and/or symptoms and what effect, if any, IONM and subsequent surgeon intervention had on these complications. Result. Indications for IONM included cervical stenosis, cervical disc prolapse, unstable fractures and bony metastases. Signal changes were observed in 33% (n=55) of cases. 24 of these patients responded to re-positioning. There were 7 total complications with full resolution by 12 months. False negative rate was 2.4% (n=4). There was one true positive. The largest cohort of patients included those who experienced no signal changes and subsequently no post-operative deficits (n=124). Conclusion. IONM is a non-invasive clinical tool that may be utilised for medicolegal reasons. Its use as a clinical tool is questionable given its relatively high false negative rate and low false positive rate. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project