Objectives. Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced
Aims. The study objective was to prospectively assess clinical outcomes for a pilot cohort of tibial shaft fractures treated with a new tibial nailing system that produces controlled axial interfragmentary
Aims. To fully verify the reliability and reproducibility of an experimental method in generating standardized
Abstract. Introduction. In cementless UKR, early post-operative tibial fractures are 7x more common in very small tibias. A smaller keel has been shown to reduce this fracture risk, but its effect on fixation is unassessed. This mechanical study assesses the effect of keel interference and size on sagittal
Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects
Objectives. Enhanced
Reverse shoulder arthroplasty (RSA) is commonly used to treat patients with rotator cuff tear arthropathy. Loosening of the glenoid component remains one of the principal modes of failure and is the main complication leading to revision. For optimal RSA implant osseointegration to occur, the
Aims. Both the femoral and tibial component are usually cemented at revision total knee arthroplasty (rTKA), while stems can be added with either cemented or press-fit (hybrid) fixation. The aim of this study was to compare the long-term stability of rTKA with cemented and press-fitted stems, using radiostereometric analysis (RSA). Methods. This is a follow-up of a randomized controlled trial, initially involving 32 patients, of whom 19 (nine cemented, ten hybrid) were available for follow-up ten years postoperatively, when further RSA measurements were made.
Introduction. Initial stability of cementless total knee arthroplasty (TKA) tibial trays is necessary to facilitate biological fixation. Previous experimental and computational studies describe a dynamic loading
Early
INTRODUCTION. The increasing incidence of periprosthetic femoral fractures (PFF) after total hip arthroplasty presents growing concerns due to challenges in treatment and increased mortality. PFF are often observed when the prosthesis is implanted in varus, especially with blade-type stems. To help elucidate its impact on the PFF risk, the specific research question is: What is the effect of misalignment of a blade-type stem (resulting in down-sized prosthesis) on 1)the distribution and magnitude of cortical stresses and 2)implant-bone
Introduction. Survival rates of recent total ankle replacement (TAR) designs are lower than those of other arthroplasty prostheses. Loosening is the primary indication for TAR revisions [NJR, 2014], leading to a complex arthrodesis often involving both the talocrural and subtalar joints. Loosening is often attributed to early implant
Introduction. The use of bone cement as a fixation agent has ensured the long-term functionality of THA implants . 1. However, some studies have shown the undesirable effect of wear of stem-cement interface, due to the release of metals and polymeric debris lead to implant failure . 2,3. Debris is generated by the
Introduction. Typical failure of cementless total hip arthroplasty is the lack of initial stability. Indeed, presence of motion at the bone implant-interface leads to formation of fibrous tissue that prevents bone ingrowth, which in turn may lead to loosening of the implant. It has been shown that interfacial
Introduction:. Primary stability is crucial for long-term fixation of cementless tibial trays.
INTRODUCTION. Reverse shoulder arthroplasty (RSA) provides an effective alternative to anatomic shoulder replacements for individuals with cuff tear arthropathy, but certain osteoarthritic glenoid deformities make it challenging to achieve sufficient long term fixation. To compensate for bone loss, increase available bone stock, and lateralize the glenohumeral joint center of rotation, bony increased offset RSA (BIO-RSA) uses a cancellous autograft for baseplate augmentation that is harvested prior to humeral head resection. The motivations for this computational study are twofold: finite element (FE) studies of BIO-RSA are absent from the literature, and guidance in the literature on screw orientations that achieve optimal fixation varies. This study computationally evaluates how screw configuration affects BIO-RSA graft
Introduction. In total knee arthroplasty (TKA), non-cemented implants rely on initial fixation to stabilize the implant in order to facilitate biologic fixation. The initial fixation can be affected by several different factors from type of implant surface, implant design, patient factors, and surgical technique. The initial fixation is traditionally quantified by measuring the motion between the implant and underlying bone during loading (micromotion). Extraction force has also been quantified for cementless devices. The question remains does an increase or decrease in extraction force affect
INTRODUCTION. Recently there have been case reports of component fractures and elevated metal ion levels potentially resulting from the use of cobalt-chrome modular necks in total hip arthroplasty. One potential cause that has been suggested is fretting corrosion caused by
Introduction. Cementless unicondylar knee implants are intended to offer surgeons the potential of a faster and less invasive surgery experience in comparison to cemented procedures. However, initial 8 week fixation with
Introduction. The success of cementless total hip arthroplasty (THA), primary as well as for revision, largely depends on the initial stability of the femoral implant. In this respect, several studies have estimated that the