Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Bone & Joint Research
Vol. 9, Issue 11 | Pages 798 - 807
2 Nov 2020
Brzeszczyńska J Brzeszczyński F Hamilton DF McGregor R Simpson AHRW

MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data.

Cite this article: Bone Joint Res 2020;9(11):798–807.


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1389 - 1394
1 Oct 2016
Butt U Rashid MS Temperley D Crank S Birch A Freemont AJ Trail IA

Aims

The aim of this study was to analyse human muscle tissue before and after rotator cuff repair to look for evidence of regeneration, and to characterise the changes seen in the type of muscle fibre.

Patients and Methods

Patients were assessed pre-operatively and one year post-operatively using the Oxford Shoulder Score (OSS) and MRI. The cross-sectional area and distribution of the type of muscle fibre were assessed on biopsies, which were taken at surgery and one year post-operatively. Paired samples from eight patients were analysed. There were three men and five women with a mean age of 63 years (50 to 73).


Bone & Joint Research
Vol. 14, Issue 3 | Pages 185 - 198
4 Mar 2025
Guo Z Li H Jiang S Rahmati M Su J Yang S Wu Y Li Y Deng Z

Sarcopenia is an ageing-related disease featured by the loss of skeletal muscle quality and function. Advanced glycation end-products (AGEs) are a complex set of modified proteins or lipids by non-enzymatic glycosylation and oxidation. The formation of AGEs is irreversible, and they accumulate in tissues with increasing age. Currently, AGEs, as a biomarker of ageing, are viewed as a risk factor for sarcopenia. AGE accumulation could cause harmful effects in the human body such as elevated inflammation levels, enhanced oxidative stress, and targeted glycosylation of proteins inside and outside the cells. Several studies have illustrated the pathogenic role of AGEs in sarcopenia, which includes promoting skeletal muscle atrophy, impairing muscle regeneration, disrupting the normal structure of skeletal muscle extracellular matrix, and contributing to neuromuscular junction lesion and vascular disorders. This article reviews studies focused on the pathogenic role of AGEs in sarcopenia and the potential mechanisms of the detrimental effects, aiming to provide new insights into the pathogenesis of sarcopenia and develop novel methods for the prevention and therapy of sarcopenia. Cite this article: Bone Joint Res 2025;14(3):185–198


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 59 - 59
1 Jul 2014
Gigante A Cianforlini M Busilacchi A Manzotti S Mattioli Belmonte M
Full Access

Summary Statement. This experimental study showed that platelet rich fibrin matrix can improve muscle regeneration and long-term vascularization without local adverse effects. Introduction. Even though muscle injuries are very common, few scientific data on their effective treatment exist. Growth Factors (GFs) may have a role in accelerating muscle repair processes and a currently available strategy for their delivery into the lesion site is the use of autologous platelet-rich plasma (PRP). The present study is focused on the use of Platelet Rich Fibrin Matrix (PRFM), as a source of GFs. Materials and Methods. Bilateral muscular lesions were created on the longissimus dorsi muscle of Wistar rats. One side of the lesion was filled with a PRFM while the contralateral was left untreated (controls). Animals were sacrificed at 5, 10, 40 and 60 days from surgery. Histological, immunohistochemical and histomorphometric analyses were performed to evaluate muscle regeneration, neovascularization, fibrosis and inflammation. The presence of metaplasic zones, calcifications and heterotopic ossification were also assessed. Results. PRFM treated muscles exhibited an improved muscular regeneration, an increase in neovascularization, and a slight reduction of fibrosis compared with controls. No differences were detected for inflammation. Metaplasia, ossification and heterotopic calcification were not detected. Conclusions. This preliminary morphological experimental study shows that PRFM use can improve muscle regeneration and long-term vascularization. Since autologous blood products are safe, PRFM may be a useful and handily product in clinical treatment of muscle injuries


Injured skeletal muscle repairs spontaneously via regeneration, however, this process is often incomplete because of fibrotic tissue formation. In our study we wanted to show improved efficiency of regeneration process induced by antifibrotic agent decorin in a combination with Platelet Rich Plasma (PRP)-derived growth factors. A novel human myoblast cell (hMC) culture, defined as CD56 (NCAM)+ developed in our laboratory, was used for evaluation of potential bioactivity of PRP and decorin. To determine the their effect on the viability of hMC we performed a MTT assay. To perform the cell proliferation assay, hMCs were separately seeded on plates at a concentration of 30 viable cells per well. Cell growth medium prepared with different concentrations of PRP exudates (5%, 10%, and 20%) and decorin (10 ng/mL, 25 ng/mL, and 50 ng/mL) were added and incubated for 7 days. After incubation we stained the cells with crystal-violet and measured the absorbance. To study the expression of Transforming Growth Factor Beta (TGF-β) and myostatin (MSTN), two main fibrotic factors in the process of muscle regeneration we performed several ELISA assays in groups treated with all therapeutic agents (PRP, decorin and their combination). Further, we have studied the ability of these agents to influence the differential cascade of dormant myoblasts towards fully differentiated myotubes by monitoring step wise activation of single nuclear factors like MyoD and Myogenin via multicolor flow cytometry. We stained the cells simultaneously with antibodies against CD56, MyoD and myogenin. We acquired cell images of 5,000 events per sample at 40 x magnification using 488 nm and 658 nm lasers and fluorescence was collected using three spectral detection channels. We analysed the cells populations according to expression of single or multiple markers and their ratios. Finally, we examined the treated cell populations using a multicolour laser microscope after staining for desmin (a key marker of myogenic differentiation of hMC), α-tubulin, and nuclei. Optical images were acquired at the center of chamber slides where the cell density is at its highest using a Leica TCS SP5 II confocal microscope and analysed using Photoshop CS6, where a “Color Range” tool was used in combination with a histogram palette to count the pixels that correspond to desmin-positive areas in an image. The mitochondrial activity of cells, as determined by the MTT assay, was significantly increased (p < 0 .001) after exposure to tested concentrations of PRP exudate. Similarly, viability was elevated in all tested concentrations of decorin. PRP exudate enhanced the viability of cells to more than 400% when compared to the control (p < 0 .001). The viability of cells treated with PRP exudates was also significantly higher when compared to decorin (p < 0 .001). Decorin did not show a significant effect on cell proliferation compared to the control, however, cultivation with PRP exudate leads to a 5-fold increase in cell proliferation (p < 0 .001). Decorin was shown to down-regulate the expression of TGF-β when compared to the control by more than 15% (p < 0 .001) but significantly less than PRP exudate p < 0 .005). PRP significantly down-regulated TGF-β expression by more than 30% (p < 0 .001). Similarly, the MSTN expression levels were significantly down-regulated by decorin and PRP. MSTN levels of cells treated with decorin were decreased by 28.4% (p < 0 .001) and 23.1% by PRP (p < 0 .001) when compared to the control group. Using flow cytometry we detected a 39.1% increase in count of myogenin positive cells in the PRP-treated group compared to the control. Moreover, there was a 3.09% increase in cells positive only for myogenin, whereas no such cells were found in the control cell population. The population of cells positive only for myogenin is considered as fully differentiated and capable of fusion into myotubes as well as future mucle fibers and is thus of great importance for muscle regeneration. At the same time 20.6% fewer cells remained quiescent (positive only for CD56). Cells positive for both MyoD and myogenin represent the population that shifted significantly towards mature myocites during myogenesis but are not yet fully committed. Finally, a statistically significant up-regulation of desmin expression (p < 0 .01 for the PRP treated group, p < 0 .005 for the decorin and PRP + decorin treated groups) was present in all therapeutic groups when compared to the control. While no significant difference was found between the PRP and decorin-treated groups, their combination led to a more than 3-fold increase (p < 0 .005) of desmin expression when compared to single bioactives. PRP can be a highly potential therapeutic agent for skeletal muscle regeneration and repair, especially if in combination with a TGF-β antagonis decorin. Achieving better healing could likely result in faster return to play and lower reinjury rate


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 131 - 137
1 Jan 2000
Menetrey J Kasemkijwattana C Day CS Bosch P Vogt M Fu FH Moreland MS Huard J

Injury to muscles is very common. We have previously observed that basic fibroblast growth factor (b-FGF), insulin growth factor type 1 (IGF-1) and nerve growth factor (NGF) are potent stimulators of the proliferation and fusion of myoblasts in vitro. We therefore injected these growth factors into mice with lacerations of the gastrocnemius muscle. The muscle regeneration was evaluated at one week by histological staining and quantitative histology. Muscle healing was assessed histologically and the contractile properties were measured one month after injury. Our findings showed that b-FGF, IGF and to a less extent NGF enhanced muscle regeneration in vivo compared with control muscle. At one month, muscles treated with IGF-1 and b-FGF showed improved healing and significantly increased fast-twitch and tetanus strengths. Our results suggest that b-FGF and IGF-1 stimulated muscle healing and may have a considerable effect on the treatment of muscle injuries


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims

Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR).

Methods

Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically.


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 1 | Pages 153 - 169
1 Feb 1966
Allbrook D Baker WDC Kirkaldy-Willis WH

1. Direct injury to skeletal muscle results in fragmentation and necrosis of muscle fibres, though this is patchy in distribution. 2. The sarcolemmal basement membranes form the interface along which fibre regeneration takes place. 3. Phagocytosis of disorganised sarcoplasm is an essential prelude to the reconstitution of severely damaged fibres. 4. Regeneration of injured muscle begins with proliferation of basophilic cells probably originating from muscle satellite cells. After a few days typical myoblast nuclear chains are present. By a week following injury the chains of myoblasts have formed myotubes, which possess myofibrils and sarcomeres. 5. By twelve days in the monkey and by eighteen days in man the muscle fibre regenerative process shows many new fibres which have not reached a mature diameter. 6. Much collagen may be formed in the tissue space at the site of injury. It appears that as the muscle fibres increase in diameter the collagen decreases in extent. 7. In the monkey by three weeks the muscle at the fracture site appears normal. This is also true in the specimens examined at four, six and twelve weeks. 8. In the monkeys the injured limb was immediately used to run and jump. A parallel intense and early activity of muscle and joints was a cardinal point in the management of this series of fracture patients. The clinical results were satisfactory. 9. It is concluded that in both the monkey and in man, given active limb movements, permanent and functionally useful muscle regeneration occurs following soft-tissue injury associated with a bone fracture


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 169 - 183
15 Apr 2024
Gil-Melgosa L Llombart-Blanco R Extramiana L Lacave I Abizanda G Miranda E Agirre X Prósper F Pineda-Lucena A Pons-Villanueva J Pérez-Ruiz A

Aims

Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells.

Methods

HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential.


The Journal of Bone & Joint Surgery British Volume
Vol. 35-B, Issue 1 | Pages 125 - 130
1 Feb 1953
Sissons HA Hadfield GJ

The effect of cortisone on the repair of simple muscle injury was studied in rabbits. The histological findings in the crushed muscle are described for a period up to twenty-one days after injury. Cortisone defers the onset of muscle regeneration, and retards its progress, but it does not change the course of the repair process or alter its eventual outcome under the conditions of the experiment. This apparent refractoriness of repair of muscle, as compared with that of other connective tissues, is discussed


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 54 - 54
1 Aug 2012
Elkasrawy M Immel D Wen X Liu X Liang L Hamrick M
Full Access

Myostatin (GDF-8) is known to play an important role in muscle regeneration, and myostatin is also expressed during the early phases of fracture healing. In this study we used fluorescent immunohistochemistry to define the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. We then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results show that while myostatin was constitutively expressed in the cytoplasm of intact skeletal muscle fibers, a pool of intense myostatin staining was observed amongst injured skeletal muscle fibers 12-24 hours post-surgery. Myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 ug/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also dose-dependently decreased fracture callus total bone volume by 23% and 47% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant, dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that myostatin may inhibit bone repair after traumatic musculoskeletal injury through both autocrine (soft-callus chondrocytes) and paracrine (surrounding injured muscle fibers) mechanisms. Thus, early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury


Bone & Joint Open
Vol. 3, Issue 4 | Pages 340 - 347
22 Apr 2022
Winkler T Costa ML Ofir R Parolini O Geissler S Volk H Eder C

Aims

The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells.

Methods

HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.


The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 5 | Pages 820 - 828
1 Nov 1985
Lehto M Duance V Restall D

The presence of the connective tissue components fibronectin and the different types of collagen was demonstrated by histological and immunohistological methods in the granulation and scar tissue of a healing injury in rat muscle. The effects of physical activity on granulation tissue production, scar formation and muscle regeneration at various stages of healing were studied. It was shown that immobilisation after injury accelerates granulation tissue production, but if continued too long, leads to contraction of the scar and to poor structural organisation of the components of regenerating muscle and scar tissue. However, a certain period of immobilisation, about five days for rat muscle, is required to allow newly-formed granulation tissue to cover the injured area and to have sufficient tensile strength to withstand subsequent mobilisation. This mobilisation, at the correct interval, seems essential for the quicker resorption of scar tissue and the better structural organisation of the muscle


Bone & Joint Research
Vol. 13, Issue 9 | Pages 474 - 484
10 Sep 2024
Liu Y Li X Jiang L Ma J

Aims

Rotator cuff tear (RCT) is the leading cause of shoulder pain, primarily associated with age-related tendon degeneration. This study aimed to elucidate the potential differential gene expressions in tendons across different age groups, and to investigate their roles in tendon degeneration.

Methods

Linear regression and differential expression (DE) analyses were performed on two transcriptome profiling datasets of torn supraspinatus tendons to identify age-related genes. Subsequent functional analyses were conducted on these candidate genes to explore their potential roles in tendon ageing. Additionally, a secondary DE analysis was performed on candidate genes by comparing their expressions between lesioned and normal tendons to explore their correlations with RCTs.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives. Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Methods. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. Results. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Conclusions. Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38–47


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 156 - 157
1 Mar 2009
Winkler T Matziolis G Schumann M Stoltenburg-Didinger G Duda G Perka C
Full Access

Background: Scientific investigation of muscle trauma and regeneration is in need of well standardised models. These should mimic the clinical situation and be thoroughly described histologically and functionally. Existing models of blunt muscle injury are either based on segmental muscle damage or in case of whole muscle injury also affect the innervating structures. In this study we present a modified model of open crush injury to the whole soleus muscle of rats sparing the region of the neuromuscular junctions. Methods: The left soleus muscles of male Sprague-Dawley rats were crushed with the use of a curved artery forceps. Functional regeneration was evaluated 1, 4 and 8 weeks after trauma (n = 6 per group) via in vivo measurement of muscle contraction force after fast twitch and tetanic stimulation of the sciatic nerve. The intact right soleus muscle served as an internal control. H & E staining was used for descriptive analysis of the trauma. The amount of fibrosis was determined histomorphologically on Picro-Sirius Red stained sections at each point of time. Results: Across the evaluated regeneration period a continuous increase in contraction force after fast twitch as well as after tetanic stimulation could be observed – describing the functional regeneration of the traumatized soleus muscle over time. Tetanic force amounted to 0.34 ± 0.14 N, which are 23 ± 4% of the control side one week after trauma, and recovered to 55 ± 23% after eight weeks. Fast twitch contraction was reduced to 49 ± 7% of the control side at one week after injury and recovered to 68 ± 19% during the study period. Fibrotic tissue occupied 40 ± 4% of the traumatized muscles after the first week, decreased to approximately 25% after four weeks and remained at this value at eight weeks. Conclusion: The trauma model characterised morphologically and functionally in the presented study allows the investigation of muscle regeneration caused by highly standardized injury exclusively to muscle fibers


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 616 - 616
1 Oct 2010
Duijnisveld B Fibbe W Hogendoorn S Nelissen R Stoel B Van Dijk J Van Duinen S
Full Access

Background: Traumatic brachial plexus (BP) injuries may cause loss of elbow flexion. After nerve surgery active elbow flexion often remains insufficient. Muscle strength improvement via cell therapy would be a potential option and could avoid muscle transfer surgery. The primary objective of this pilot study was to assess the safety and feasibility of autologous bone marrow (BM)-derived mononuclear cell (MNC) injection in partly denervated m. biceps brachii of BP patients. Secondary, this study has focused on the myogenic potential of BM-derived MNC by assessing the morphological and functional improvement of the biceps. Methods: Nine adult BP patients with insufficient force recovery of elbow flexion were included. Three escalating doses (0.9, 4 and 8 * 108) of MNCs were injected in the m. biceps brachii (group A, B and C). In group A, BM was aspirated under local anesthesia (60 ml). In group B and C, BM was aspirated in combination with a muscle tendon transfer (Steindler flexorplasty) under general anesthesia (350 and 650 ml respectively). A muscle biopsy was performed before and 3 months after transplantation. Furthermore, quantitative needle EMG, CT-scan and clinical function was obtained at pre-transplantation and at 3 and 6 months follow-up. The EMG and CT-scan data were blinded during analysis. Results: No negative side effects were observed. Biopsies showed an increase of 80% in myofiber diameter (P = 0.007), 51% in satellite cells (P = 0.045), 83% in capillary to myofiber ratio (P < 0.001) and a decrease of 51% in fibrosis (P = 0.012). Histological changes were most apparent in group B with an increase of 126% in myofiber diameter (P = 0.019), 100% in capillary to myofiber ratio (P = 0.027), and a decrease of 70% in fibrosis (P = 0.023). EMG demonstrated an increase of 36% in amplitude (P = 0.045), 29% in duration (P = 0.005) and 29% in number of phases of the motor unit potentials (P = 0.002). CT-scan analysis showed a decrease of 48% in mean muscle density (P = 0.009). Discussion: This study shows that BM-derived MNC transplantation in a partly denervated muscle of traumatic PB patients is safe and feasible. Muscle improvement was observed in muscle biopsies. Furthermore, changes in EMGs and CT-scans were also suggestive for muscle regeneration. The BM dose applied in group B could represent the optimal dose to enhance partly denervated muscles. The results of the present study require confirmation in a placebo-controlled study


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 622 - 622
1 Oct 2010
Winkler T Duda G Matziolis G Perka C Tohtz S Von Roth P
Full Access

Skeletal muscle injuries often lead to severe functional deficits. Mesenchymal stem cell (MSC) therapy is a promising but still experimental tool in the regeneration of muscle function after severe trauma. One of the most important questions, which has to be answered prior to a possible future clinical application is the ideal time of transplantation. Due to the initial inflammatory environment we hypothesized that a local injection of the cells immediately after injury would result in an inferior functional outcome compared to a delayed transplantation. Twenty-seven female Sprague Dawley rats were used for this study. Bone marrow was aspirated from both tibiae of each animal and autologous MSC cultures obtained from the material. The animals were separated into three groups (each n=9) and the left soleus muscles were bluntly crushed in a standardized manner. In group 1 2×106 MSCs were transplanted into the injured muscle immediately after trauma, whereas group 2 and 3 received an injection of saline. Another week later the left soleus muscles of the animals of group 2 were transplanted with the same number of MSCs. Group 1 and 3 received a sham treatment with the application of saline solution in an identical manner. In vivo functional muscle testing was performed four weeks after trauma to quantify muscle regeneration. Maximum contraction forces after twitch stimulation decreased to 39 ± 18 % of the non injured right control side after crush trauma of the soleus muscles as measured in group 3. Tetanic stimulation showed a reduction of the maximum contraction capacity of 72 ± 12 % of the value obtained from intact internal control muscles. The transplantation of 2 x 106 MSCs one week after trauma improved the functional regeneration of the injured muscles as displayed by significantly higher contraction forces in group 2 (twitch: p = 0.014, tetany: p = 0.018). Local transplantation of the same number of MSCs immediately after crush injury was able to enhance the regeneration process to a similar extent with an increase of maximum twitch contraction forces by 73.3 % (p = 0.006) and of maximum tetanic contraction forces by 49.6 % (p = 0.037) compared to the control group. The presented results underline the effectivity of MSC transplantation in the treatment of severe skeletal muscle injuries. The most surprising finding was that despite of the fundamental differences of the local environment into which MSCs had been transplanted, similar results could be obtained in respect to functional skeletal muscle regeneration. We assume that the effect of the MSC after immediate injection can partly be explained by their known immunomodulatory competences. The data of our study provide evidence for a large time window of MSC transplantation after muscle trauma