Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 4 - 4
1 May 2016
Abdelgaied A Brockett C Hardaker C Fisher J Jennings L
Full Access

Introduction. To meet the demands of younger more active patients more robust pre-clinical wear testing methods are required, in order to simulate a wider range of activities. A new electromechanical simulator (Simulation Solutions, UK) with a greater range of motion, a driven abduction/adduction axis and improved input kinematic following has been developed to meet these requirements, as well as requirements of the relevant international standards. This study investigated the wear of a fixed bearing total knee replacement using this new electromechanical knee simulator, comparing with previous data from a pneumatic simulator. Materials/Methods. The wear of six Sigma CR fixed bearing TKRs (DePuy, UK) with curved moderately cross-linked polyethylene inserts (XLK) was determined in pneumatic and electromechanical Prosim knee simulators (Simulation Solutions, UK). Standard gait displacement controlled kinematics were used, with a maximum anterior-posterior displacement of either 10mm (high) or 5mm (intermediate) [1]. The output profiles from the simulators were obtained and compared to the demand input profiles. The lubricant used was 25% new-born calf serum and wear determined gravimetrically. Statistical analysis was performed using the one-way ANOVA with 95% confidence interval and significance was taken at p<0.05. Results. The electromechanical and pneumatic knee simulators both achieved the demanded maximum axial load although the pneumatic simulator did not achieve the initial peak on heel strike. The maximum delivered AP displacements from the electromechanical knee simulator were 2.8 (3.5mm input) and 9.6 (10mm input) [mm] compared to 1.7 and 9.2 [mm] from the pneumatic simulator during the stance and the swing phases respectively. The corresponding values for the IE rotation angle were ±4.9 (5 degrees input) and ±4.1 [degrees] from the electromechanical and pneumatic simulators respectively (both stance and swing phases) (Figure 1). The electromechanical knee simulator produced a mean wear rate of 2.7 ±0.9mm3/MC (mean ± 95% CI) under intermediate kinematics, compared to 2.6 ±0.9mm3/MC from the pneumatic simulator (p=0.99). The corresponding mean wear rates under high kinematics were 5.6 ± 2.3 and 6.7 ±1.5 [mm3/MC] from the electromechanical and pneumatic knee simulators respectively (p=0.59). Discussion. The wear rates from the electromechanical and pneumatic knee simulators were not significantly different. However, the output kinematic profiles followed the input kinematic profiles more closely on the electromechanical simulator than the pneumatic simulator. This electromechanical knee simulator can be used for a wider range of conditions, including high-flexion, due to it's improved capability and performance over the pneumatic simulators. Conclusion. The electromechanical knee simulator showed improved performance and capability compared to the pneumatic knee simulator, and can therefore meet higher current and future testing demands. The wear trends, from the two simulators, were however not significantly different under standard gait conditions. Acknowledgements. This research work was supported by EPSRC, Innovate UK and BBSRC [IKC Medical Technologies], the Leeds Centre of Excellence in Medical Engineering, WELMEC, funded by the Wellcome Trust and EPSRC, WT088908/Z/09/Z and the Leeds Musculoskeletal Biomedical Research Unit (LMBRU), funded by NIHR. JF is an NIHR Senior Investigator. DePuy Synthes, UK, supplied the TKRs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 249 - 249
1 Mar 2013
Maiti R Fisher J Jin Z Rowley L Jennings L
Full Access

Introduction. Patella femoral joint bearings in total knee replacements have shown low wear (3.1 mm. 3. /MC) under standard gait simulator conditions. 1. However, the wear in retrieval studies have shown large variations between 1.3 to 45.2 mm. 3. /year. 2. Previous in vitro studies on the tibial femoral joint have shown wear is dependent on design, materials and kinematics. 3. . The aim of this study was to investigate the influence of the design (geometry) and shape on the wear rate of patella femoral joints in total knee replacements. Materials and Methods. The Leeds/Prosim knee simulator was used to investigate the wear of two types of commercially available patellae. The PFC Sigma cobalt chrome femoral component was coupled with 2 types of patellae buttons: round and oval dome. The UHMWPE was the same for the both types – GUR1020 GVF (gamma irradiated in vacuum and foiled packed). 25% bovine serum was used as the lubricant. The test were carried out at three conditions – high medial lateral (ML) rotations (<4°) and uncontrolled ML displacement (<4 mm), low ML rotation (<1°) and uncontrolled ML displacement (<4 mm); the physiological gait cycle; and low ML rotation and controlled ML displacement (<1.5 mm). In this abstract the two designs were tested in physiological gait condition (Figure 1). Patella ML displacement and tilt were passively controlled and measured after every 300,000 cycles. A ligament resisting force equivalent to 10 N4 was applied on the lateral side of the patella to avoid patella slip. Five samples of each design were tested for 3 million cycles at a cycle rate of 1 Hz. The wear volume was obtained gravimetrically every million cycles and presented with 95% confidence limits. Statistical significance was taken at p<0.05. Results and Discussions. The wear rate of PFC sigma round dome patella was higher (8.63 ± 3.44 mm. 3. /million cycles) compared to the PFC sigma oval dome patella (6.28 ± 3.89 mm. 3. /million cycles) (Figure 2). However, no significant difference in the wear rates was found between the two shapes (P=0.2). The low area of contact of oval dome patella (31.2% of total surface area) as compared to round dome patella (39.9%) led to low wear. 5. . The wear volume and the patellar tilt were positively correlated for oval dome and round dome patella, R. 2. > 0.9 (Figure 3). Increase in the patellar tilt resulted increase in sliding distance in perpendicular direction of polymer orientation. This led to higher wear volume. Conclusions. Wear rate decreased with change of patella shape from round dome to oval dome although not significantly. Increase in the patellar tilt resulted in increase in the wear volume. Acknowledgement. This research was supported in part by the DePuy and EPSRC. In addition, it was partially funded through WELMEC, a Centre of Excellence in Medical Engineering funded by the Wellcome Trust, under grant number WT 088908/Z/09/Z and additionally supported by the NIHR (National Institute for Health Research) as part of collaboration with the LMBRU (Leeds Musculoskeletal Biomedical Research Unit)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 1 - 1
1 Sep 2012
Al-Hajjar M Fisher J Tipper J Williams S Jennings L
Full Access

INTRODUCTION. Ceramic-on-ceramic hip replacements have generated great interest in recent years due to substantial improvements in manufacturing techniques and material properties. 1. Microseparation conditions that could occur due to several clinical factors such as head offset deficiency, medialised cup combined with laxity of soft tissue resulting in a translation malalignment, have been shown to cause edge loading, replicate clinically relevant wear mechanisms. 2,3. and increase the wear of ceramic-on-ceramic bearings. 3,4. The aim of this study was to investigate the influence of increasing the femoral head size on the wear of ceramic-on-ceramic bearings under several clinically relevant simulator conditions. MATERIALS AND METHODS. The wear of size 28mm and 36mm ceramic-on-ceramic bearings (BIOLOX® Delta, CeramTec, Germany) was determined under different in vitro conditions using the Leeds II hip simulator. For each size bearing, two clinical cup inclination angles were considered, 55° (n=3) and 65° (n=3) for the 28mm bearing and 45° (n=3) and 65° (n=3) for the 36mm bearing. The first two (28mm study) or three (36mm study) million cycles ran under standard gait conditions and a subsequent three million cycles ran under microseparation conditions. A standard gait cycle included a twin peak load (300N–3000N), extension/flexion (−15°/+30°) and internal/external rotation (±10°). Microseparation. 3. was achieved by applying a 0.4–0.5mm medial displacement to the cup relative to the head during the swing phase of the standard gait cycle resulting in edge loading at heel strike. The lubricant was 25% (v/v) new-born calf serum which was changed approximately every 333,000 cycles. The wear volume was ascertained through gravimetric analysis every million cycles. One way ANOVA was performed (significance: p<0.05), and 95% confidence limits were calculated. RESULTS AND DISCUSSION. The mean wear rate under standard gait conditions was 0.05mm. 3. / million cycles for the 28mm bearings and significantly lower (p=0.003) for the 36mm bearings (Figure 1) which could be due to improved lubrication regime. The wear of ceramic-on-ceramic bearings was not influenced by the increase in cup inclination angle for either bearing size (Figure 1). The introduction of microseparation into the gait cycle resulted in stripe wear on the femoral head with a corresponding wear area at the rim of the acetabular cup and significantly higher wear rates of the ceramic-on-ceramic bearings (Figure 2). The wear rate of BIOLOX® Delta bearings under microseparation conditions was still low (<0.25mm. 3. /million cycles) compared to the third generation alumina ceramic-on-ceramic bearings (1.84mm. 3. /million cycles). 4. under the same adverse conditions. Under microseparation conditions, the wear rate of size 36mm bearings was significantly higher (p=0.004) than that for size 28mm bearings. This was thought to be due to the larger contact area for the larger bearings and deprived lubrication under edge loading conditions. For both bearing sizes, the combination of both steep cup inclination angles and microseparation conditions did not increase the wear rates any further compared to microseparation conditions alone (Figure 3). This study shows the importance of surgical positioning of the femoral head and acetabular cup and the importance of testing new bearing materials and designs using these adverse simulator methods. ACKNOWLEDGEMENT. This study was supported by the Furlong Research Charitable Foundation (FRCF) and the National Institute of Health Research (NIHR) as part of a collaboration with the Leeds Musculoskeletal Biomedical Research Unit (LMBRU)


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 2 - 2
1 Sep 2012
Al-Hajjar M Fisher J Williams S Tipper J Jennings L
Full Access

INTRODUCTION. Retrieval and clinical studies of metal-on-metal (MoM) bearings have associated increased wear. 1. and elevated patient ion levels. 2. with steep cup inclination angles and edge loading conditions. The University of Leeds have previously developed a hip simulator method that has been validated against retrievals and shown to replicate clinically relevant wear rates and wear mechanisms. 3,4. This method involves introducing lateral microseparation to represent adverse joint laxity and offset deficiency. This study aimed to investigate the effect of microseparation representing translational malpostion, and increased cup inclination angle, representing rotational malposition, in isolation and combined on the wear of different sizes (28 and 36mm) MoM bearing in total hip replacement (THRs). MATERIALS AND METHODS. The wear of size 28mm and 36mm MoM THRs bearings was determined under different in vitro conditions using the Leeds II hip simulator. For each size bearing, two clinical cup inclination angles were considered, 45° (n=3) and 65° (n=3). The first three million cycles were run under standard gait conditions and subsequently three million cycles were run under microseparation conditions. Standard gait cycles included a twin peak load (300N–3000N), extension/flexion (−15°/+30°) and internal/external rotation (±10°). Microseparation. 4. was achieved by applying a 0.4–0.5mm medial displacement to the cup relative to the head during the swing phase of the standard gait cycle resulting in edge loading at heel strike. The lubricant was 25% (v/v) new-born calf serum. The wear volume was determined through gravimetric analysis every million cycles. One way ANOVA was performed (significance: p<0.05), and 95% confidence limits were calculated. RESULTS. Under standard gait conditions, the 28mm MoM bearing showed head-rim contact and increased wear rate with increased cup inclination angle but the 36mm bearing did not show any increase in wear. Microseparation and edge loading increased the wear rate of MoM bearings for all cup inclination angle conditions and bearing sizes (Figure 1). DISCUSSION. With the larger size bearings, head-rim contact occurred at a steeper cup inclination angle (>65°) providing an advantage over smaller bearings. Under standard gait conditions, where head-rim contact did not occur, wear was low, due to mixed lubrication and wear reduction through a protein boundary film. However, edge loading of the cup, with elevated stress, caused excess damage and wear. This effect was more dominant with microseparation conditions to that of head-rim contact due to increased cup inclination angle alone. Under microseparation conditions, there were no significant differences in the wear rates of the 28mm and the 36mm size bearings. However, the wear rates obtained in this study for 28mm and 36mm bearings were significantly lower than those obtained for size 39mm surface replacement MoM bearings (8.99 mm. 3. /million cycles) tested under the same adverse conditions. 5. . CONCLUSION. This study shows the importance of acetabular cup design and correct surgical positioning of the femoral head and acetabular cup and restoration of offset and cup centre. ACKNOWLEDGEMENT. This study was supported by the Furlong Research Charitable Foundation (FRCF) and the National Institute of Health Research (NIHR) as part of a collaboration with the Leeds Musculoskeletal Biomedical Research Unit (LMBRU). The components were custom made specifically for this project by Corin Ltd