Advertisement for orthosearch.org.uk
Results 1 - 20 of 48
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 36 - 36
1 Feb 2017
Bayers-Thering M Brown M Matthews J Phillips M Krackow K
Full Access

Abstract. A number of postoperative complications of navigated total knee arthroplasty have been discussed in the literature, including tracker pin site infection and fracture. In this paper we discuss the low postoperative complication rate in a series of 3100 navigated total knee arthroplasties and the overall complication rate in a systematic analysis of the literature. Methods. 3100 consecutive patients with navigated total knee arthroplasties from 2001 to 2016 were retrospectively evaluated for complications specific to navigation. We discuss the two cases of postoperative fracture through tracker pin sites that we experienced and compare this systematically to the literature. Results. Postoperatively, our 3100 patient cohort experienced a total of two fractures through pin sites for an incidence of 0.065%. One was a distal femoral fracture which was treated surgically, and the other was a proximal tibial fracture treated nonoperatively. Due to our incorporation of the tracker sites within our operative incision, there were no identifiable pin site infections which others have noted. Our 0.065% fracture rate compares favorably with the 0.16% rate of fracture published in the literature. We had no separate pin site infections in comparison to the 0.47% incidence of separate pin site infection reported by those who use seperate percutaneous incisions for tracker placement. Conclusion. There is an extremely low risk of perioperative complications due to the instrumentation used in navigated total knee arthroplasty when utilizing the Stryker Navigation System and 4.0 mm anchoring pins placed within the surgical incision. Our experience has demonstrated that careful placement of the bicortical anchoring pin is important


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 120 - 120
1 Mar 2012
Jain S Mohanlal P Dhinsa B
Full Access

To analyse the intra-operative variation in mechanical axes of the lower limb at various stages during navigated total knee replacement. A prospective study was performed to analyse the intra-operative variation in the mechanical axes of the lower limb during navigated total knee replacement. All consecutive patients who underwent navigated total knee replacement were included and patients with inadequate data were excluded from the study. The intra-operative initial, trial and the final mechanical hip-knee-ankle axes were recorded from the navigation system. The differences between these axes were calculated and analysed. There were forty patients, of which 24 were females and 16 males with the age ranging from 37-89 (average 68.4) years. The right knee was replaced in 27 and the left knee in 13 patients. The average initial mechanical axes alignment was 0.03° valgus (3° varus to 3° valgus), trial alignment 0.64° varus (3° varus to 1.5° valgus) and final alignment 0.25° varus (4° varus to 4° valgus). Average deviation from initial to trial axes was 0.97°, trial to final axes was 0.74° and initial to final axes was 1.08°. The correlation co-efficient between the initial and the trial axes was 0.25, trial and final axes was 0.43 & initial and final axes was 0.09. This study highlights a significant variation in mechanical axes between the different stages of navigated total knee replacement. The potential sources of intra-operative errors causing these changes could be soft tissue imbalance, variations in implant placement and possible tracker micro motion. Execution of bony cuts in near normal neutral alignment does not guarantee achievement of near normal final alignment. We advocate surgeons to be vigilant to avoid potential malalignment during navigated total knee replacement


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 16 - 16
1 Sep 2012
Bin Abd Razak HR Pang H Yeo SJ Tan MH Chong HC Lo NN
Full Access

Purpose. The purpose of this study was to compare joint line changes between posterior-stabilized (PS) and cruciate-retaining (CR) computer navigated total knee arthroplasties (TKA) and to evaluate the impact on functional outcome. Background. Restoration of the native joint line has been a common goal in all TKA designs. Computer-navigated TKA in increasingly being favoured by many surgeons, due to increased precision and lesser complications. Few studies have reported the effect of computer navigated TKA on joint line restoration. It remains to be seen if the greater precision offered by computer-navigated TKA in restoration of joint line translates to improvement in functional outcome. Methods. This study assessed joint line changes following computer-assisted navigated total knee arthroplasty (TKA). A total of 195 patients were followed up for a period of 2 years following primary surgery. The change in the joint line was calculated based on the verified bony resections and the final thickness of the insert. The patients were stratified into two groups: the CR group and the PS group. The joint line changes of both groups were then compared using the Student t-test. Multivariate analysis and regression modelling were then utilized to analyze the functional outcomes of both groups at 6 months and 2 years of follow-up. Results. A total of 112 CR knees and 83 PS knees were analyzed. PS knees had a significantly greater joint line change as compared to CR knees with a p-value of 0.04 (Figure 1). Although the knee, function and oxford knee questionnaire scores were significantly better in the CR group at the 6-month follow-up, this did not translate into any significant difference in functional scores at the 2-year follow-up. It was also found that the PS group had significantly better final range of motion. Conclusion. CR knees are associated with significantly less joint line changes than PS knees in computer navigated TKA. PS knees have a greater range of motion at 2 years of follow-up. No significant difference in outcome was noted at 2 years follow-up


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 66 - 66
1 Oct 2012
Belvedere C Ensini A De La Barrera JM Feliciangeli A Leardini A Catani F
Full Access

During total knee replacement (TKR), surgical navigation systems (SNS) allow accurate prosthesis component implantation by tracking the tibio-femoral joint (TFJ) kinematics in the original articulation at the beginning of the operation, after relevant trial components implantation, and, ultimately, after final component implantation and cementation. It is known that TKR also alters normal patello-femoral joint (PFJ) kinematics resulting frequently in PFJ disorders and TKR failure. More importantly, patellar tracking in case of resurfacing is further affected by patellar bone preparation and relevant component positioning. The traditional technique used to perform patellar resurfacing, even in navigated TKR, is based only on visual inspection of the patellar articular aspect for clamping patellar cutting jig and on a simple calliper to check for patellar thickness before and after bone cut, and, thus, without any computer assistance. Even though the inclusion in in-vivo navigated TKR of a procedure for supporting also patellar resurfacing based on patient-specific bone morphology seems fundamental, this have been completely disregarded till now, whose efficacy being assessed only in-vitro. This procedure has been developed, together with relevant software and surgical instrumentation, as an extension of current SNS, i.e. TKR is navigated, at the same time measuring the effects of every surgical action on PFJ kinematics. The aim of this study was to report on the first in-vivo experiences during TKR with patellar resurfacing. Four patients affected by primary gonarthrosis were implanted with a fixed bearing posterior-stabilised prosthesis (NRG, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. All TKR were performed by means of two SNS (Stryker®-Leibinger, Freiburg, Germany) with the standard femoral/tibial trackers, the pointer, and a specially-designed patellar tracker. The novel procedure for patellar tracking was approved by the local ethical committee; the patients gave informed consent prior the surgery. This procedure implies the use of a second system, i.e. the patellar SNS (PSNS), with dedicated software for supporting patellar resurfacing and relative data processing/storing, in addition to the traditional knee SNS (KSNS). TFJ anatomical survey and kinematics data are shared between the two. Before surgery, both systems were initialised and the patellar tracker was assembled with a sterile procedure by shaping a metal grid mounted with three markers to be tracked by PSNS only. The additional patellar-resection-plane and patellar-cut-verification probes were instrumented with a standard tracker and a relevant reference frame was defined on these by digitisation with PSNS. Afterwards, the procedures for standard navigation were performed to calculate preoperative joint deformities and TFJ kinematics. The anatomical survey was performed also with PSNS, with relevant patellar anatomical reference frame definition and PFJ kinematics assessment according to a recent proposal. Standard procedures for femoral and tibial component implantation, and TFJ kinematics assessment were then performed by using relevant trial components. Afterwards, the procedure for patellar resection begun. Once the surgeon had arranged and fixed the patellar cutting jig at the desired position, the patellar-resection-plane probe was inserted into the slot for the saw blade. With this in place, the PSNS captured tracker data to calculate the planned level of patellar bone cut and the patellar cut orientation. Then the cut was executed, and the accuracy of this actual bone cut was assessed by means of the patellar-cut-verification probe. The trial patellar component was positioned, and, with all three trial components in place, TFJ and PFJ kinematics were assessed. Possible adjustments in component positioning could still be performed, until both kinematics were satisfactory. Finally, final components were implanted and cemented, and final TFJ and PFJ kinematics were acquired. A sterile calliper and pre- and post-implantation lower limb X-rays were used to check for the patellar thickness and final lower limb alignment. The novel surgical technique was performed successfully in all four cases without complication, resulting in 30 min longer TKR. The final lower limb alignment was within 0.5°, the resurfaced patella was 0.4±1.3 mm thinner than in the native, the patellar cut was 1.5°±3.0° laterally tilted. PFJ kinematics was taken within the reference normality. The patella implantation parameters were confirmed also by X-ray inspection; discrepancies in thickness up to 5 mm were observed between SNS- and calliper-based measurements. At the present experimental phase, a second separate PSNS was utilised not to affect the standard navigated TKR. The results reported support relevance, feasibility and efficacy of patellar tracking and PFJ kinematics assessment in in-vivo navigated TKR. The encouraging in-vivo results may lay ground for the design of a future clinical patella navigation system the surgeon could use to perform a more comprehensive assessment of the original whole knee anatomy and kinematics, i.e. including also PFJ. Patellar bone preparation would be supported for suitable patellar component positioning in case of resurfacing but, conceptually, also in not resurfacing if patellar anatomy and tracking assessment by SNS reveals no abnormality. After suitable adjustment and further tests, in the future if this procedure will be routinely applied during navigated TKR, abnormalities at both TFJ and PFJ can be corrected intra-operatively by more cautious bone cut preparation on the femur, tibia and also patella, in case of resurfacing, and by correct prosthetic component positioning


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 38 - 38
1 Apr 2018
Jenny J
Full Access

INTRODUCTION. Total knee arthroplasty (TKA) is considered a highly successful procedure. Survival rates of more than 90% after 10 years are generally reported. However, complications and revisions may still occur for many reasons, and some of them may be related to the operative technique. Computer assistance has been suggested to improve the accuracy of implantation of a TKA (Jenny 2005). Short term results are still controversial (Roberts 2015). However, few long term results have been documented (Song 2016). The present study was designed to evaluate the long-term (more than 10 years) results of a TKA which was routinely implanted with help of a non-image based navigation system. The 5- to 8-year of this specific TKA has already been documented (Jenny 2013). The hypothesis of this study will be that the 10 year survival rate of this TKA will be improved in comparison to historical papers when analyzing survival rates and knee function as evaluated by the Knee Society Score (KSS). MATERIAL AND METHODS. All patients operated on between 2001 and 2004 for implantation of a navigated TKA were eligible for this study. Usual demographic and peri-operative items have been record. All patients were prospectively followed with clinical and radiological examination. All patients were contacted after the 10 year follow-up for repeat clinical and radiological examination (KSS, Oxford knee questionnaire and knee plain X-rays). Patients who did not return were interviewed by phone call. For patients lost of follow-up, family or general practitioner was contacted to obtain relevant information about prosthesis survival. Survival curve was plotted according to Kaplan-Meier. RESULTS. 247 TKAs were implanted during the study time-frame. 225 cases had an optimal lower limb axis (HKA angle between 177° and 183°) after TKA (91%). Final follow-up (including death or revision) was obtained for 200 cases (81%). Clinical status after 10 years was obtained for 146 cases (59%) (KSS, 102 cases – Oxford questionnaire, 146 cases – radiologic evaluation, 94 cases). 4 prosthetic revisions were performed for mechanical reasons during the follow-up time (1%). The 10 year survival rate was 98%. The mean KSS was 188 points. The mean Oxford score was 55 points. No component was considered loose at the final radiographic evaluation. No polyethylene wear was detected at the final radiographic evaluation. DISCUSSION. This study confirms our initial hypothesis, namely quite satisfactory results of navigated implanted TKA after more than 10 years. Navigation, whose precision is no longer to be demonstrated, probably contributed to the quality of the results. A more consistent anatomical reconstruction and ligamentous balance of the knee should lead to more consistent survival of the TKA. Other authors did observe similar results (Baumbach 2016). However, superiority of navigated TKA in comparison to conventional implanted TKA is difficult to prove because of the subtle differences expected in mostly underpowered studies. Longer term follow-up may be required


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 144 - 144
1 Apr 2019
Prasad KSRK Kumar R Sharma A Karras K
Full Access

Background. Stress fractures at tracker after computer navigated total knee replacement are rare. Periprosthetic fracture after Minimally Invasive Plate Osteosynthesis (MIPO) of stress fracture through femoral tracker is unique in orthopaedic literature. We are reporting this unique presentation of periprosthetic fractures after MIPO for stress fracture involving femoral pin site track in computer assisted total knee arthroplasty, treated by reconstruction nail (PFNA). Methods. A 75-year old female, who had computer navigated right total knee replacement, was admitted 6 weeks later with increasing pain over distal thigh for 3 weeks without trauma. Prior to onset of pain, she achieved a range of movements of 0–105 degrees. Perioperative radiographs did not suggest obvious osteoporosis, pre-existent benign or malignant lesion, or fracture. Radiographs demonstrated transverse fracture of distal third of femur through pin site track. We fixed the fracture with 11-hole combihole locking plate by MIPO technique. Eight weeks later, she was readmitted with periprosthetic fracture through screw hole at the tip of MIPO Plate and treated by Reconstruction Nail (PFNA), removal of locking screws and refixation of intermediate segment with unicortical locking screws. Then she was protected with plaster cylinder for 4 weeks and hinged brace for 2 months. Results. Retrograde nail for navigation pin site stress fracture entails intraarticular approach with attendant risks including scatches to prosthesis and joint infection. So we opted to fix by MIPO technique. Periprosthetic fracture at the top of MIPO merits fixation with antegrade nail in conjunction with conversion of screws in the proximal part of the plate to unicortical locking screws. Overlap of at least 3cms offers biomechanical superiority. She made an uneventful recovery and was started on osteoporosis treatment, pending DEXA scan. Conclusion. Reconstruction Nail (PFNA), refixation of intermediate segment with unicortical locking screws constitutes a logical management option for the unique periprosthetic fracture after MIPO of stress fracture involving femoral pin site track in computer assisted total knee replacement


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 6 - 6
1 Jun 2021
Hickey M Anglin C Masri B Hodgson A
Full Access

Robotic and navigated TKA procedures have been introduced to improve component placement precision for the purpose of improving implant survivorship and other clinical outcomes. Although numerous studies have shown enhanced precision in placing components, adoption of technology-assistance (TA) for TKA has been relatively slow. One reason for this has been the difficulty in demonstrating the cost-effectiveness of implementing TA-TKA systems and assessing their impact on revision rates. In this study, we aimed to use a simulation approach to answer the following questions: (1) Can we determine the distribution of likely reductions in TKA revision rates attributable to TA-TKA in an average US patient population? And, (2) What reduction in TKA revision rates are required to achieve economic neutrality?. In a previous study, we developed a method for creating large sets of simulated TKA patient populations with distributions of patient-specific factors (age at index surgery, sex, BMI) and one surgeon-controlled factor (coronal alignment) drawn from registry data and published literature. Effect sizes of each factor on implant survival was modeled using large clinical studies. For 10,000 simulated TKA patients, we simulated 20,000 TKA surgeries, evenly split between groups representing coronal alignment precisions reported for manual (±3°) and TA-TKA (±1.0°), calculating the patient-specific survival curve for each group. Extending our previous study, we incorporated the probability of each patient's expected survival into our model using publicly available actuarial data. This allowed us to calculate a patient-specific estimate of the Reduction in Lifetime Risk of Revision (RLRR) for each simulated patient. Our analysis showed that 90% of patients will achieve an RLRRof 1.5% or less in an average US TKA population. We then conducted a simplified economic analysis with the goal of determining the net cost of using TA-TKA per case when factoring in future savings by TKA revision rates. We assumed an average cost of revision surgery to be $75,000 as reported by Delanois (2017) and an average added cost incurred by TA-TKA to be $6,000 per case as reported by Antonis (2019). We estimate the net cost per TA-TKA case (CNet) to be the added cost per TA-TKA intervention (CInt), less the cost of revision surgery (CRev) multiplied by the estimated RLRR: CNet = CInt - CRev∗RLRR. We find that, under these assumptions, use of TA-TKA increases expected costs for all patients with an RLRR of under 8%. Based on these results, it appears that it would not be cost-effective to use TA-TKA on more than a small fraction of the typical US TKA patient population if the goal is to reduce overall costs through reducing revision risks. However, we note that this simulation does not consider other possible reported benefits of TA-TKA surgery, such as improved functional and pain outcome scores which may justify its use on other grounds. Alternative costs incurred by TA-TKA will be evaluated in a future study. To reach economic neutrality, TA-TKA systems either must reduce the added cost per intervention or increase RLRR by better addressing the root causes of revision


Purpose:. To compare accuracy of transepicondylar axis as a reference for femoral component rotation in primary navigated versus non navigated total knee arthroplasty in severely deformed knees. Methods:. A prospective study done from dec 2009 to dec 2011 at tertiary centre. 180 knees were included (124 females and 56 males). All cases were randomly allocated into 2 groups: navigated and non navigated. All surgeries were carried out by two senior arthroplasty surgeons. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view in Non navigated knees. Postoperative TEA was assessed by taking CT scan, measuring condylar twist angle and posterior condylar angle (PCA). Results:. The mean PCA was around 4° with TEA as reference in Navigated and 6° in Non navigated knees and only 7% patients required an additional lateral release of which 2% patient had preop patellar maltracking. No postoperative patellar maltracking was seen. Anterior knee pain was present in 10% patients. No postop infection is noted. Alignment ranging from 4° to 8° external rotation. Conclusion:. Navigation is most accurate measure for TEA as reference, as compared to non navigated TKA, which can lead to excessive external rotation especially in severely deformed knees


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 4 - 4
1 Oct 2014
Jenny J Diesinger Y Firmbach F
Full Access

Modern total knee replacements aim to reconstruct a physiological kinematic behaviour, and specifically femoral roll-back and automatic tibial rotation. A specific software derived from a clinically used navigation system was developed to allow in vivo registration of the knee kinematics before and after total knee replacement. The study was designed to test for the feasibility of the intra-operative registration of the knee kinematics during standard, navigated total knee replacement. The software measures the respective movement of the femur and the tibia, and specially antero-posterior translation and tibial rotation during passive knee flexion. Kinematic registration was performed twice during an usual procedure of navigated total knee replacement: 1) Before any bone resection or ligamentous balancing; 2) After fixation of the final implants. 200 cases of total knee replacement have been analysed. Post-operative kinematic was classified as following: 1) Occurrence of a normal femoral roll-back during knee flexion, no roll-back or paradoxical femoral roll-forward. 2) Occurrence of a normal tibial internal rotation during knee flexion, no tibial rotation or paradoxical tibial external rotation. All patients were followed up for a minimal period of 12 months, and reevaluated at the latest follow-up visit for clinical and functional results with completion of the Knee Society Scores. Recording the kinematic was possible in all cases. The results of both pre-operative and post-operative registrations were analysed on a qualitative manner. The results were close to those already published in both experimental and clinical studies. About femoral roll-back, 54% had a normal femoral roll-back during knee flexion after total knee replacement, 13% had no significant roll-back and 33% had a paradoxical femoral roll-forward. About tibia rotation, 65% had a normal tibia internal rotation during knee flexion, 16% had no significant tibia rotation and 19 had a paradoxical tibia external rotation. The mean Knee Score was 92/100 ± 10 points. There was a significant correlation between the post-operative kinematic behaviour and the Function Score, with better score for the patients having a physiological femoral roll-back and a physiological tibial internal rotation during knee flexion (p<0.01). Intra-operative analysis of the kinematic of the knee during total knee replacement may offer the chance to modify the kinematic behaviour of the implant and to choose the best fitted constraint to the patient's native knee in order to impact positively the functional result


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 69 - 69
1 Aug 2013
Smith J Blyth M Jones B MacLean A Rowe P
Full Access

Total knee arthroplasty (TKA) has been established as a successful procedure for relieving pain and improving function in patients suffering from severe knee osteoarthritis for several decades now. It involves removing bone from both the medial and lateral compartments of the knee and sacrificing one or both of the cruciate ligaments. This in turn is likely to have an impact on the patients' functional outcome. In subjects where only one compartment of the knee joint is affected with osteoarthritis then unicondylar knee arthroplasty (UKA) has been proposed as an alternative procedure to TKA. This operation preserves the cruciate ligaments and removes bone only from the affected side of the joint. As a result there is the possibility of an improved functional outcome post surgery. UKA has been associated with faster recovery, good functional outcome in terms of range of motion and it is bone sparing compared to TKA. However, the biggest obstacle to UKA success is the high failure rates. The aim of this study was to compare the functional outcome of computer navigated TKA (n=60) and UKA (n=42) patients 12 month post operation using flexible electrogoniometry. Flexible electrogoniometry was used to investigate knee joint kinematics during gait, slopes walking, stair negotiation, and when using standard and low chairs. Maximum, minimum and excursion knee joint angles were calculated for each task. The biomechanical assessment showed statistically significant improvements in the knee kinematics in terms of maximum (p<0.0004) and excursion (p<0.026) knee joint angles in the UKA patient group compared to the navigated TKA group for each of the functional tasks. There was no statistically significant difference between the minimum knee joint angles during these functional tasks (p>0.05). Therefore, UKA patients were showed to have a significantly better functional outcome in terms of the maximum knee joint angle during daily tasks. A limitation of this study is that it compares two cohorts rather than two randomised groups. It is expected that UKA patients will have a better functional outcome. Our results suggest that for patients with less severe knee osteoarthritis, UKA may offer a better functional outcome than the more common surgical option of TKA. The recent advancements in computer assisted and robotic assisted knee arthroplasty has the possibility to improve the accuracy of UKA and therefore led to the increase in confidence and in usage in a procedure which has the potential to give patients a superior functional outcome


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_3 | Pages 20 - 20
1 Apr 2019
Iqbal M Batta V Pulimamidi S Sharma A Sundararajan S Manjure S
Full Access

Background. Bone preservation is desired for future revision in any knee arthroplasty. There is no study comparing the difference in the amount of bone resection when soft tissue balance is performed with or without computer navigation. To determine the effect on bony cuts when soft tissue balance is performed with or without use of computer software by standard manual technique in total knee arthroplasty. One hundred patients aged 50 to 88 years underwent navigated TKR for primary osteoarthritis. In group A, 50 patients had both soft tissue release and bone cuts done using computer-assisted navigation. In group B, 50 patients had soft tissue release by standard manual technique first and then bone cuts were guided by computer-assisted navigation. In group A the mean medial tibial resection was 5 ± 2.3 mm and lateral was 8 ± 1 mm compared to 5 ± 2 mm (P = 0.100) and 8 ± 1 mm respectively in group B (P = 0.860). In group A the mean medial femoral bone cut was 9 ± 2.9 mm and lateral was 8 ± 2 mm as compared to 9.5 ± 2.9 mm (P = 0.316) and 10 ± 2.2 mm respectively in group B (P = 0.001). Average prosthesis size was 6 (range 3 to 8) in group A as compared to size 5 (range 2 to 7) in group B. Average navigation time in group A was 102 minutes (range 45 to 172) and in group B was 83 minutes (range 42 to 165, P = 0.031). Our results show that performing soft tissue release and bone cuts using computer- assisted navigation is more bone conserving as compared to manual soft tissue release and bone cuts using computer navigation for TKR, thus preserving bone for possible future revision surgery


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 145 - 145
1 Apr 2019
Prasad KSRK Schemitsch E Lewis P
Full Access

Background. Mechanics and kinematics of the knee following total knee replacement are related to the mechanics and kinematics of the normal knee. Restoration of neutral alignment is an important factor affecting the long-term results of total knee replacement. Tibial cut is a vital and crucial step in ensuring adequate and appropriate proximal tibial resection, which is essential for mechanical orientation and axis in total knee replacement. Tibial cut must be individually reliable, reproducible, consistent and an accurate predictor of individual anatomical measurements. Conventional tibial cuts of tibia with fixed measurements cannot account for individual variations. While computer navigated total knee replacement serves as a medium to achieve this objective, the technology is not universally applicable for differing reasons. Therefore we evolved the concept and technique of Condylar Differential for planned tibial cuts in conventional total knee replacement, which accounts for individual variations and reflects the individual mechanical orientation and alignment. Methods. We used the Condylar Differential in 37 consecutive total knee replacements. We also applied the technique in valgus knees and severe advanced osteoarthritis. First a vertical line is drawn on the digital weight bearing anteroposterior radiograph for mechanical axis of tibia. Then a horizontal line is drawn across and perpendicular to the mechanical axis of tibia. The distances between the horizontal line and the lowest reproducible points of the articular surfaces of the medial and lateral tibial condyles respectively are measured. The difference between the two measurements obviously represents the Condylar Differential. Condylar Differential, adjusted to the nearest millimeter, is maintained in executing the tibial cuts, if necessary successive cuts. Results. Condylar Differential measurement showed a very wide variation, ranging from 8–6 (2 mm) to 10-0 (10 mm). We found that prior measurement of Condylar Differential is a simple, consistent and effective estimate and individualizes the tibial cut for optimal templating of tibia in total knee replacement. We encountered no problems, adopting this technique, in our consecutive series of total knee replacements. Conclusions. Condylar Differential contributes to optimal individualized tibial cut in conventional total knee replacement and is a useful alternative to computer navigated option with comparable accuracy in this respect. While we used the technique of Condylar Differential in digitized radiographs, this technique can also be applied to plain films, allowing for the magnification


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 94 - 94
1 Aug 2013
Belvedere C Ensini A Leardini A Dedda V Cenni F Feliciangeli A De La Barrera JM Giannini S
Full Access

INTRODUCTION. In computer-aided total knee arthroplasty (TKA), surgical navigation systems (SNS) allow accurate tibio-femoral joint (TFJ) prosthesis implantation only. Unfortunately, TKA alters also normal patello-femoral joint (PFJ) functioning. Particularly, without patellar resurfacing, PFJ kinematics is influenced by TFJ implantation; with resurfacing, this is further affected by patellar implantation. Patellar resurfacing is performed only by visual inspections and a simple calliper, i.e. without computer assistance. Patellar resurfacing and motion via patient-specific bone morphology had been assessed successfully in-vitro and in-vivo in pilot studies aimed at including these evaluations in traditional navigated TKA. The aim of this study was to report the current experiences in-vivo in two patient cohorts during TKA with patellar resurfacing. MATERIALS AND METHODS. Twenty patients with knee gonarthrosis were divided in two cohorts of ten subjects each and implanted with as many fixed-bearing posterior-stabilised prostheses (NRG® and Triathlon®, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. Fifteen patients were implanted; five patients of the Triathlon cohort are awaiting hospital admission. TKAs were performed using two SNS (Stryker®-Leibinger, Freiburg-Germany). In addition to the traditional knee SNS (KSNS), the novel procedure implies the use of the patellar SNS (PSNS) equipped with a specially-designed patellar tracker. Standard navigated procedures for intact TFJ survey were performed using KSNS. These were performed also with PSNS together intact PFJ survey. Standard navigated procedures for TFJ implantation were performed using KSNS. During patellar resurfacing, the patellar cutting jig was fixed at the desired position with a plane probe into the saw-blade slot; PSNS captured tracker data to calculate bone cut level/orientation. After sawing, resection accuracy was assessed using a plane probe. TFJ/PFJ kinematics were captured with all three trial components in place for possible adjustments, and after final component cementing. A calliper and pre/post-TKA X-rays were used to check for patellar thickness/alignment. RESULTS. This protocol was performed successfully in TKAs, resulting in 30 min longer TKA. Final lower limb misalignment was within 0.5°, resurfaced patella was 0.4±1.2 mm thinner than the native, and patellar cut was 0.4°±4.1° laterally tilted. Final PFJ kinematics was taken within the reference normality in both series. PFJ flexion, tilt and medio-lateral shift range were 66.9°±8.5° (minimum÷maximum, 15.6°÷82.5°), 8.0°±3.1° (−5.3°÷2.8°), and 5.3±2.0 mm (−5.5÷0.2 mm), respectively. Significant (p<0.005) correlations were found between the internal/external rotation of the femoral component and PFJ tilt (R. 2. =0.41), and between the mechanical axis on the sagittal plane and PFJ flexion (R. 2. =0.44) and antero-posterior shift (R. 2. =0.45). Patellar implantation parameters were confirmed by X-ray inspections. Discrepancies in thickness up to 5 mm were observed between SNS- and calliper-based measurements. CONCLUSIONS. These results support relevance/efficacy of patellar tracking in in-vivo navigated TKA and may contribute to a more comprehensive assessment of the original whole knee, i.e. including also PFJ. Patellar preparation would be supported for suitable component positioning in case of resurfacing, but, conceptually, also in not-resurfacing if SNS does not reveal PFJ abnormalities., Using this procedure in the future, TFJ/PFJ abnormalities can be corrected intra-operatively by more cautious bone cut preparation and prosthetic positioning on the femur, tibia and patella


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 97 - 97
1 Jun 2018
Haas S
Full Access

Total knee arthroplasty is a successful procedure with good long-term results. Studies indicate that 15% – 25% of patients are dissatisfied with their total knee arthroplasty. In addition, return to sports activities is significantly lower than total hip arthroplasty with 34% – 42% of patients reporting decreased sports participation after their total knee arthroplasties. Poor outcomes and failures are often associated with technical errors. These include malalignment and poor ligament balancing. Malalignment has been reported in up to 25% of all revision knee arthroplasties, and instability is responsible for over 20% of failures. Most studies show that proper alignment within 3 degrees is obtained in only 70% – 80% of cases. Navigation has been shown in many studies to improve alignment. In 2015, Graves examined the Australian Joint Registry and found that computer navigated total knee arthroplasty was associated with a reduced revision rate in patients under 65 years of age. Navigation can improve alignment, but does not provide additional benefits of ligament balance. Robotic-assisted surgery can assist in many of the variables that influence outcomes of total knee arthroplasty including: implant positioning, soft tissue balance, lower limb alignment, proper sizing. The data on robotic-assisted unicompartmental arthroplasty is quite promising. Cytech showed that femoral and tibial alignment were both significantly more accurate than manual techniques with three times as many errors with the manually aligned patients. Pearle, et al. compared the cumulative revision rate at two years and showed this rate was significantly lower than data reported in most unicompartmental series, and lower revision rates than both Swedish and Australian registries. He also showed improved satisfaction scores at two years. Pagnano has noted that optimal alignment may require some deviation from mechanically neutral alignment and individualization may be preferred. This is also likely to be a requirement of more customised or bi-cruciate retaining implant designs. The precision of robotic surgery may be necessary to obtain this individualised component alignment. While robotic total knee arthroplasty requires further data to prove its value, more precise alignment and ligament balancing is likely to lead to improved outcomes, as Pearl, et al. and the Australian registry have shown. While it is difficult to predict the future at this time, I believe robotic-assisted total knee arthroplasty is the future and that future begins now


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 57 - 57
1 May 2016
Bruni D Iacono F Bignozzi S Marcacci M
Full Access

The main purpose of the present study is to prospectively investigate whether preoperative functional flexion axis in patients with osteoarthritisand varus-alignment changes after total knee arthroplasty and whether a correlation exists both between preoperative functional flexion axis and native limb deformity. A navigated total knee arthroplasty was performed in 108 patients using a specific software to acquire passive joint kinematics before and after implant positioning. The knee was cycled through three passive range of motions, from 0 to 120. Functional flexion axis was computed using the mean helical axis algorithm. The angle between the functional flexion axis and the surgical transepicondylar axis was determined on frontal (aF) and axial (aA) plane. The pre- and postoperative hip-kneeankle angle, related to femur mechanical axis, was determined. Postoperative functional flexion axis was different from preoperative only on frontal plane, while no differences were found on axial plane. No correlation was found between preoperative aA and native limb deformity, while a poor correlation was found in frontal plane, between aF and preoperative hip-knee-ankle angle. Total knee arthroplasty affects functional flexion axis only on frontal plane while has no effect on axial plane. Preoperative functional flexion axis is in a more varus position respect to the transepicondylar axis both in pre- and postoperative conditions. Moreover, the position of the functional axis on frontal plane in preoperative conditions is dependent on native limb alignment, while on axial plane is not dependent on the amount of preoperative varus deformity


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 8 - 8
1 Feb 2017
Lee H Ham D Lee J Ryu H Chang G Kim S Park Y
Full Access

Introduction. The range of motion (ROM) obtained after total knee arthroplasty (TKA) is an important measurement to evaluate the postoperative outcomes impacting other measures such as postoperative function and satisfaction. Flexion contracture is a recognized complication of TKA, which reduces ROM or stability and is a source of morbidity for patients. Objectives. The purpose of this study was to evaluate the influence of intra-operative soft tissue release on correction of flexion contracture in navigated TKA. Methods. This is prospective cohort study, 43 cases of primary navigation assisted TKA were included. The mean age was 68.3 ± 6.8 years. All patients were diagnosed with grade 4 degenerative arthritis in K-L grading system. The average preoperative mechanical axis deviation was 10.3° ± 5.3 and preoperative flexion contracture was 12.8° ± 4.8. All arthroplasties were performed using a medial parapatellar approach with patellar subluxation. First, medial release was performed, and posterior cruciate ligament was sacrificed. After all bone cutting was performed and femoral and tibial trials were inserted, removal of posterior femoral spur and capsular release were performed. The degree of correction of flexion contracture was evaluated and recorded with navigation. Results. After the medial soft tissue release, as a first step, the flexion contracture was recorded as 7.2° ± 4.3 and 4.1° ± 4.0 as varus. The second step, posterior cruciate ligament was sacrificed, the flexion contracture was recorded as 7.2° ± 4.4 and 5.5° ± 3.0 as varus. After posterior clearing procedure and capsular release, the flexion contracture was showed as 3.9° ± 1.2 and 1.4° ± 1.2 as varus. The final angles after cemented real implant were recorded as 3.3° ± 1.4 in flexion contracture, 0.9° ± 1.8 in varus. There were significant differences all steps except between medial release step and posterior cruciate sacrifice step and between posterior clearing step and final angle. Conclusions. The appropriate soft tissue balancing could correct flexion contracture intra-operatively. The medial release could correct the flexion contracture around 5° compared with preoperative flexion contracture, and posterior clearing procedure could improve further extension. However, the sacrifice of posterior cruciate ligament provided little effect on correction of the flexion contracture intra-operatively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 92 - 92
1 Jan 2016
Colle F Lopomo N Bruni D Gagliardi M Marko T Francesco Iacono Zaffagnini S Marcacci M
Full Access

Introduction. Providing proper rotational alignment of femoral component in total knee arthroplasty is mandatory to achieve correct kinematics, good ligament balance and proper patellar tracking. Recently functional references, like the function flexion axis (FFA), have been introduced to achieve this goal. Several studies reported the benefits of using the FFA but highlighted that further analyses are required to better verify the FFA applicability to the general clinical practice. Starting from the hypothesis that the FFA can thoroughly describe knee kinematics but that the joint kinematics itself can be different from flexion to extension movements, the purpose of this study was to analyse which factors could affect the FFA estimation by separately focusing on flexion and extension movements. Methods. Anatomical acquisitions and passive joint kinematics were acquired on 79 patients undergoing total knee arthroplasty using a commercial navigation system. Knee functional axis was estimated, from three flexion and extension movements separately acquired included in a range between 0° and 120°. For flexion and extension, in both pre- and post-implant conditions, internal-external (IE) rotations was analysed to track any changes in kinematic pattern, whereas differences in FFA estimation were identified by analysing the angle between the FFA itself and the transepicondylar axis (TEA) in axial and frontal plane. Results. The analysis of IE rotation (Figure 1) showed a statistically significant difference between the two paths in pre-implant condition, between 25°and 35° of flexion (p < 0.05). The analysis of the angle between FFA and TEA showed statistical differences between flexion and extension (Figure 2) in both pre- and post-implant conditions and in both frontal and axial plane. Analogously, pre- and post-operative conditions (Figure 3) presented statistically significant difference. Conclusions. The estimation of the functional axis changed in the frontal plane in relation to flexion and extension movements, above all considering pre-operative conditions. Therefore from a clinical point of view this study suggested to consider the only flexion movement for functional axis estimation during navigated TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 62 - 62
1 Jan 2016
Ishida K Sasaki H Toda A Kodato K Matsumoto T Takayam K Kuroda R Kurosaka M Shibanuma N
Full Access

Background. Data on varus-valgus and rotational profiles can be obtained during navigated total knee arthroplasty (TKA). Such intraoperative kinematic data might provide instructive clinical information for refinement of surgical techniques, as well as information on the anticipated postoperative clinical outcomes. However, few studies have compared intraoperative kinematics and pre- and postoperative clinical outcomes; therefore, the clinical implications of intraoperative kinematics remain unclear. In clinical practice, subjects with better femorotibial rotation in the flexed position often achieve favorable postoperative range of motion (ROM); however, no objective data have been reported to prove this clinical impression. Hence, the present study aimed to investigate the correlation between intraoperative rotation and pre- and postoperative flexion angles. Materials and Methods. Twenty-six patients with varus osteoarthritis undergoing navigated posterior-stabilized TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. An image-free navigation system (Stryker 4.0 image-free computer navigation system; Stryker) was used for the operation. Registration was performed after minimum soft tissue release and osteophyte removal. Then, maximum internal and external rotational stress was manually applied on the knee with maximum extension and 90° flexion by the same surgeon, and the rotational angles were recorded using the navigation system. After knee implantation, the same rotational stress was applied and the rotational angles were recorded again. In addition, ROM was measured before surgery and at 1 month after surgery. The correlation between the amount of pre- and postoperative tibial rotation and ROM was statistically evaluated. Results. The amount of tibial rotation at registration was positively correlated with that after surgery (p < 0.05). Although the amount of tibial rotation at maximum extension was not correlated with ROM, the amount of rotation at 90° flexion at registration was positively correlated with pre- and postoperative ROM (p < 0.05). Moreover, the amount of tibial rotation at 90° flexion was positively correlated with postoperative ROM (p < 0.05). Conclusion. It is well known that preoperative ROM affects postoperative ROM. Our results showed that better tibial rotation at 90° flexion predicts favorable postoperative ROM, suggesting that flexibility of the surrounding soft tissues as well as the quadriceps muscles is an important factor for obtaining better ROM. Further evaluation of navigation-based kinematics during TKA surgery may provide useful information on ROM


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 94 - 94
1 Jan 2016
Colle F Lopomo N Bruni D Francesco Iacono Zaffagnini S Marcacci M
Full Access

Introduction. Several methods, based on both functional and anatomical references, have been studied to reach the goal of a proper knee kinematics in total knee arthroplasty (TKA). However, at present, there is still a large debate about which is the most precise and accurate method to achieve the correct rotational implant positioning. One of the main methods already used in TKA to describe the tibiofemoral flexion-extension movement, based on a kinematic technique, thus not influenced by the typical variability related to the identification of anatomical references, is called “functional flexion axis” (FFA) method. The purpose of this study was to determine the repeatability in estimating knee functional flexion axis, thus evaluating the robustness of the method for navigated total knee arthroplasty. Methods. Passive kinematic and anatomical acquisitions were performed with a commercial navigation system on 87 patients undergoing TKA with primary osteoarthritis. Knee FFA was estimated, before and after implant positioning, from three flexion-extension movements between 0° and 120° (Figure 1). The angle between Functional Flexion Axis and an arbitrary clinical reference, the transepicondylar axis (TEA), was analysed in frontal and axial view (Figure 2). Repeatability Coefficient and Intraclass Correlation Coefficient (ICC) were estimated to analyse the reliability and the agreement in identifying the axis. Results. The analysed angle between FFA and TEA presented differences between pre- and post-operative conditions only in the frontal plane (from −8.3° ± 5.5° to −2.8° ± 5.3°) (p < 0.0001). There was good intra-observer reliability and agreement. Repeatability coefficient ranged between 4.4° (3.7° – 4.9°) and 3.4° (2.9° – 3.8°), the ICC between 0.87 (0.83 – 0.91) and 0.93 (0.90 – 0.95) and the standard deviation ranged between 1.3° and 1.0°. Conclusions. The present study demonstrated that total knee arthroplasty affected the estimation of FFA only in the frontal plane. The FFA method has good repeatability both in pre- and post-operative conditions, thus it can be considered for clinical purposes, including navigated knee arthroplasty, as well. Since the FFA is surgeon-independent and avoids the bias due to anatomical landmarks identification, this could potentially provide an alternative technique to plan implant positioning in total knee arthroplasty


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 19 - 19
1 Dec 2013
Bruni D Iacono F Colle F Bignozzi S Marcacci M
Full Access

BACKGROUND:. The optimal reference for rotational positioning of femoral component in total knee replacement (TKR) is debated. Navigation has been suggested for intra-op acquisition of patient's specific kinematics and functional flexion axis (FFA). QUESTIONS/PURPOSES:. To prospectively investigate whether pre-operative FFA in patients with osteoarthritis (OA) and varus alignment changes after TKR and whether a correlation exists between post-op FFA and pre-op alignment. PATIENTS AND METHODS:. A navigated TKR was performed in 108 patients using a specific software to acquire passive joint kinematics before and after TKR. The knee was cycled through three passive range of motions (PROM), from 0° to 120°. FFA was computed using the mean helical axis algorithm. The angle between FFA and surgical TEA was determined on frontal (αf) and axial (αa12) plane. The pre- and post-op hip-knee-ankle angle (HKA) was determined. RESULTS:. Post-op FFA was different from pre-op FFA only on frontal plane. No significant difference was found on axial plane. No correlation was found between HKA-pre and αA-pre. A significant correlation was found between HKA-pre and αF–pre. CONCLUSIONS:. TKR modifies FFA only on frontal plane. No difference was found on axial plane. Pre-op FFA is in a more varus position respect to TEA. The position of FFA on frontal plane is dependent on limb alignment. TKR modifies the position of FFA only on frontal plane. The position of FFA on axial plane is not dependent on the amount of varus deformity and is not influenced by TKR