Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 35 - 35
1 Apr 2017
Ciapetti G Fotia C Granchi D Rojewski M Rosset P Gómez-Barrena E Baldini N
Full Access

Background. Delayed bone healing and nonunion are complications of long bone fractures, with prolonged pain and disability. Regenerative therapies employing mesenchymal stromal cells (MSC) and/or bone substitutes are increasingly applied to enhance bone consolidation. Within the REBORNE project, a multi-center orthopaedic clinical trial was focused on the evaluation of efficacy of expanded autologous bone marrow (BM) derived MSC combined with a CaP-biomaterial to enhance bone healing in patients with nonunion of diaphyseal fractures. To complement the clinical and radiological examination of patients, bone turnover markers (BTM) were assayed as potential predictors of bone healing or non-union. Methods. Bone-specific alkaline phosphatase (BAP), C-terminal-propeptide type I-procollagen (PICP), osteocalcin (OC), β-Cross-Laps Collagen (CTX), soluble receptor activator of NFkB (RANKL), osteoprotegerin (OPG) were measured by ELISA assays in blood samples of 22 patients at BM collection and at follow-ups (6, 12 and 24 weeks post-surgery). Results. A significant relationship with age was found only at Visit 6, with an inverse correlation for CTX, RANKL and OC, and positive for OPG. BTM levels were not related to gender. As an effect of local regenerative process, some BTM showed significant changes in comparison to the starting value. In particular, the time course of BAP, PICP and RANKL was different in patients with a successful healing in comparison to patients with negative outcome. The BTM profile indicated remarkable bone formation activity after 12 weeks after surgery. However, the paucity of failed patients in our case series did not allow to prove statistically the role of BTM as predictors of the final outcome. Conclusion. BTM related to bone cell function are useful to measure the efficacy of a regenerative approach based on expanded MSC. Level of evidence. Diagnostic Level IV. Work supported by the EC, Seventh Framework Programme (FP7), through the REBORNE Project, grant agreement no. 241879


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 11 - 11
1 Jan 2017
Ciapetti G Granchi D Barrena EG Rojewski M Rosset P Layrolle P Donati D Spazzoli B Baldini N
Full Access

Delayed bone healing and nonunion are complications of long bone fractures, with prolonged pain and disability. Regenerative therapies employing mesenchymal stromal cells (MSC) and/or bone substitutes are increasingly applied to enhance bone consolidation. The REBORNE project entailed a multi-center orthopaedic clinical trial focused on the evaluation of efficacy of expanded autologous bone marrow (BM) derived MSC combined with a CaP-biomaterial, to enhance bone healing in patients with nonunion of diaphyseal fractures. To complement the clinical and radiological examination of patients, bone turnover markers (BTM) were assayed as potential predictors of bone healing or non-union. Peripheral blood was collected from patients at fixed time-endpoints, that is at 6,12 and 24 weeks post-surgery for implantation of expanded autologus MSC and bone-like particles. Bone-specific alkaline phosphatase (BAP), C-terminal-propeptide type I-procollagen (PICP), osteocalcin (OC), β-Cross-Laps Collagen (CTX), soluble receptor activator of NFkB (RANKL), osteoprotegerin (OPG) were measured by ELISA assays in blood samples of 22 patients at BM collection and at follow-up visits. A significant relationship with age was found only at 6 months, with an inverse correlation for CTX, RANKL and OC, and positive for OPG. BTM levels were not related to gender. As an effect of local regenerative process, some BTM showed significant changes in comparison to the baseline value. In particular, the time course of BAP, PICP and RANKL was different in patients with a successful healing in comparison to patients with a negative outcome. The BTM profile apparently indicated a remarkable bone formation activity 12 weeks after surgery. However, the paucity of failed patients in our case series did not allow to prove statistically the role of BTM as predictors of the final outcome. Blood markers related to bone cell function are useful to measure the efficacy of a expanded MSC-regenerative approach applied to long bone non-unions. Changes of the markers may provide a support to radiological assessment of bone healing


Bone & Joint 360
Vol. 8, Issue 4 | Pages 46 - 47
1 Aug 2019
Das A


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives. The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing. Methods. Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically. Results. The total number of PBMNCs was decreased after QQ-culture, however, the number of CD34+ and CD206+ cells were found to have increased as assessed by flow cytometry analysis. In addition, gene expression of angiogenic factors was upregulated in QQMNCs. In the animal model, the rate of bone union was higher in the QQMNC group than in the other groups. Radiographic scores and bone volume were significantly associated with the enhancement of angiogenesis in the QQMNC group. Conclusion. We have demonstrated that QQMNCs have superior potential to accelerate fracture healing compared with PBMNCs. The QQMNCs could be a promising option for fracture nonunion. Cite this article: K. Mifuji, M. Ishikawa, N. Kamei, R. Tanaka, K. Arita, H. Mizuno, T. Asahara, N. Adachi, M. Ochi. Angiogenic conditioning of peripheral blood mononuclear cells promotes fracture healing. Bone Joint Res 2017;6: 489–498. DOI: 10.1302/2046-3758.68.BJR-2016-0338.R1


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks.

The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022).

The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.