Objectives. Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results. Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion. This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with
The posterior cruciate ligament (PCL) was imaged by MRI throughout flexion in neutral tibial rotation in six cadaver knees, which were also dissected, and in 20 unloaded and 13 loaded living (squatting) knees. The appearance of the ligament was the same in all three groups. In extension the ligament is curved concave-forwards. It is straight, fully out-to-length and approaching vertical from 60° to 120°, and curves convex-forwards over the roof of the intercondylar notch in full flexion. Throughout flexion the length of the ligament does not change, but the separations of its attachments do. We conclude that the PCL is not loaded in the unloaded cadaver knee and therefore, since its appearance in all three groups is the same, that it is also unloaded in the living knee during flexion. The posterior fibres may be an exception in hyperextension, probably being loaded either because of posterior femoral lift-off or because of the forward curvature of the PCL. These conclusions relate only to everyday life: none may be drawn with regard to more strenuous activities such as sport or in trauma.
The Anterior Cruciate Ligament (ACL) plays a vital role in maintaining function and stability in the knee. Over the last several decades, much research has been focused on elucidating the anatomy, structural properties, biomechanics, pathology, and optimal treatments for the ACL. Through careful and objective study, the ACL can be understood to be a dynamic structure, rich in neurovascular supply. Although it is referred to as one ligament, it is comprised of two dis-tinct bundles which function synergistically to facilitate
There are few studies that have compared between continuous flexion activities and extension activities of
Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore
Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and patella. The knee morphology of a study population (n=20), diagnosed with trochlear dysplasia and a history of recurrent patellar dislocation was compared to a gender- and age-matched control group (n=20). The arthro-CT scan-based 3D-models were isotropically scaled and landmark-based reference planes were created for quantification of the morphometry. Statistical analysis was performed to detect shape differences between the femur, tibia and patella as individual bone models (Mann-Whitney U test) and to detect differences in size agreement between femur and tibia (Pearson's correlation test). The size of the femur did not differ significantly between the two groups, but the maximum size difference (scaling factor) over all cases was 35%. Significant differences were observed in the trochlear dysplasia (TD) versus control group for all conventional parameters. Morphometrical measurements showed also significant differences in the three directions (anteroposterior (AP), mediolateral (ML), proximodistal (PD)) for the distal femur, tibia and patella. Correlation tests between the width of the distal femur and the tibial plateau revealed that TD knees show less agreement between femur and tibia than the control knees; this was observed for the overall width (TD: r=0.172; p=0.494 - control group: r=0.636; p=0.003) and the medial compartment (TD: r=0.164; p=0.516 - control group: r=0.679; p=0.001), but not for the lateral compartment (TD: r=0.512; p=0.029 - control: r=0.683; p=0.001). In both groups the intercondylar eminence width was strongly correlated with the notch width (TD: r=0.791; p=0.001 - control: r=0.643; p=0.002). The morphology of the trochleodysplastic knee differs significantly from the
The purpose of this study is to investigate the three-dimensional (3D) kinematics of
Aim. The knee radiograph is a commonly requested investigation as the knee joint is commonly injured. Each radiograph exposes 0.01mSv of radiation to the patient that is equivalent to 1.5 days of natural background radiation. Also, each knee radiograph costs approximately £37.16 to produce. The aim of the clinical audit was to use the Pittsburgh knee rules to attempt to reduce the number of knee radiographs taken in patients with acute knee injuries and hence reduce the dose of ionising radiation the patient receives. Method. A retrospective audit was undertaken. 149 knee requests and radiographs taken during October 2016 were evaluated. Each knee radiograph request including patient history and clinical examination was graded against the Pittsburgh knee rules to give a qualifying score. The Pittsburgh knee rules assigns 1 point for each of the following; blunt trauma or a fall, age less than 12 years or over 50 years, and unable to take 4 limping weight bearing steps in the emergency department. A Pittsburgh knee rule qualifying score warranting a knee radiograph is 2 or more points, where the patient must have had blunt trauma or a fall. A Pittsburgh knee rule score less than 2 points predicts a non-fractured knee and hence no radiograph warranted. Each radiograph was reviewed if a fracture was present or not. Results. The clinical audit identified 85 true negative patients where their Pittsburgh knee rule score was less than 2 points and they did not have a fracture of the knee joint. The Pittsburgh knee rule score of less than 2 points did not warrant obtaining knee radiographs. Therefore, a total of 85 knee radiographs were unnecessary which is equivalent to 127.5 days of background radiation. The financial burden of these unnecessary radiographs is £2648.60. The negative predictive value of the Pittsburgh knee rules in this audit was 93.4%. Discussion. The clinical audit shows that the use of the Pittsburgh knee rules scoring system can reduce the number of knee radiographs obtained by 57.4% and hence the doses of ionising radiation patients are exposed to. The audit also showed this clinical scoring system has a high negative predictive value that when utilised can discern patients with a
Total knee replacements (TKR) have been the main choice of treatment for alleviating pain and restoring physical function in advanced degenerative osteoarthritis of the knee. Recently, there has been a rising interest in minimally invasive surgery TKR (MIS-TKR). However, accurate restoration of the knee axis presents a great challenge. Patient-specific-instrumented TKR (PSI-TKR) was thus developed to address the issue. However, the efficacy of this new approach has yet to be determined. The purpose of the current study was thus to measure and compare the 3D kinematics of the MIS-TKR and PSI-TKR in vivo during sit-to-stand using a 3D fluoroscopy technology. Five patients each with MIS-TKR and PSI-TKR participated in the current study with informed written consent. Each subject performed quiet standing to define their own neutral positions and then sit-to-stand while under the surveillance of a bi-planar fluoroscopy system (ALLURA XPER FD, Philips). For the determination of the 3D TKR kinematics, the computer-aided design (CAD) model of the TKR for each subject was obtained from the manufacturer including femoral and tibial components and the plastic insert. At each image frame, the CAD model was registered to the fluoroscopy image via a validated 2D-to-3D registration method. The CAD model of each prosthesis component was embedded with a coordinate system with the origin at the mid-point of the femoral epicondyles, the z-axis directed to the right, the y-axis directed superiorly, and the x-axis directed anteriorly. From the accurately registered poses of the femoral and tibial components, the angles of the TKR were obtained following a z-x-y cardanic rotation sequence, corresponding to flexion/extension, adduction/abduction and internal/external rotation. During sit-to-stand the patterns and magnitudes of the translations were similar between the MIS-TKR and PSI-TKR groups, with posterior translations ranging from 10–20 mm and proximal translations from 29–31mm. Differences in mediolateral translations existed between the groups but the magnitudes were too small to be clinically significant. For angular kinematics, both groups showed close-to-zero abduction/adduction, but the PSI-TKR group rotated externally from an internally rotated position (10° of internal rotation) to the neutral position, while the MIS-TKR group maintained at an externally rotated position of less than 5° during the movement. During sit-to-stand both groups showed similar patterns and magnitudes in the translations but significant differences in the angular kinematics existed between the groups. While the MIS-TKR group maintained at an externally rotated position during the movement, the PSI-TKR group showed external rotations during knee extension, a pattern similar to the screw home mechanism in a
Injuries of the posterolateral corner (PLC) of the knee are uncommon, but can lead to chronic disability from persistent instability and resultant articular cartilage degeneration if not appropriately treated. Although numerous reconstructive techniques have been described in the literature, there is no consensus on a single surgical approach due to a lack of consistent, long-term clinical outcomes. Nonanatomic reconstructions, in particular, have produced variable results, while anatomic reconstructions offer the most promise by restoring
During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the
Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired Objectives
Methods
Osteoarthritis (OA) is characterised by articular cartilage degradation. MicroRNAs (miRNAs) have been identified in the development of OA. The purpose of our study was to explore the functional role and underlying mechanism of miR-138-5p in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage. Human articular cartilage was obtained from patients with and without OA, and chondrocytes were isolated and stimulated by IL-1β. The expression levels of miR-138-5p in cartilage and chondrocytes were both determined. After transfection with miR-138-5p mimics, allele-specific oligonucleotide (ASO)-miR-138-5p, or their negative controls, the messenger RNA (mRNA) levels of aggrecan (ACAN), collagen type II and alpha 1 (COL2A1), the protein levels of glycosaminoglycans (GAGs), and both the mRNA and protein levels of matrix metalloproteinase (MMP)-13 were evaluated. Luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot were performed to explore whether Forkhead Box C1 (FOCX1) was a target of miR-138-5p. Further, we co-transfected OA chondrocytes with miR-138-5p mimics and pcDNA3.1 (+)-FOXC1 and then stimulated with IL-1β to determine whether miR-138-5p-mediated IL-1β-induced cartilage matrix degradation resulted from targeting FOXC1.Objectives
Materials and Methods
Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion.
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion >
90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.
We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method. Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.
Trochlear dysplasia is an important anatomical abnormality in symptomatic patellar instability. Our study assessed the mismatch between the bony and cartilaginous morphology in patients with a dysplastic trochlea compared with a control group. MRI scans of 25 knees in 23 patients with trochlear dysplasia and in 11 patients in a randomly selected control group were reviewed retrospectively in order to assess the morphology of the cartilaginous and bony trochlea. Inter- and intra-observer error was assessed. In the dysplastic group there were 15 women and eight men with a mean age of 20.4 years (14 to 30). The mean bony sulcus angle was 167.9° (141° to 203°), whereas the mean cartilaginous sulcus angle was 186.5° (152° to 214°; p <
0.001). In 74 of 75 axial images (98.7%) the cartilaginous contour was different from the osseous contour on subjective assessment, the cartilage exacerbated the abnormality. Our study shows that the morphology of the cartilaginous trochlea differs markedly from that of the underlying bony trochlea in patients with trochlear dysplasia. MRI is necessary in order to demonstrate the pathology and to facilitate surgical planning.
There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°.