Autologous
Perilesional changes of chronic focal
We used fresh small-fragment
Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis, which occurs secondary to traumatic joint injury which is known to cause pathological changes to the
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid
The fixation of articular fractures, with many small
Introduction and Objective. Several in vitro studies have shed light on the osteogenic and chondrogenic potential of graphene and its derivatives. Now it is possible to combine the different biomaterial properties of graphene and 3D printing scaffolds produced by tissue engineering for cartilage repair. Owing to the limited repair capacity of articular cartilage and bone, it is essential to develop tissue-engineered scaffolds for patients suffering from joint disease and trauma. However, chondral lesions cannot be considered independently of the underlying bone tissue. Both the microcirculation and the mechanical support provided with bone tissue must be repaired. One of the distinctive features that distinguish graphene from other nanomaterials is that it can have an inductive effect on both bone and cartilage tissue. In this study, the effect of different concentrations of graphene on the in vivo performance of single-layer poly-ε-caprolactone based-scaffolds is examined. Our hypothesis is that graphene nanoplatelet- containing, robocast PCL scaffolds can be an effective treatment option for large
Joint surface restoration of deep
The clinical success of
Objectives. In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and
Introduction. The ankle cartilage has an important function in walking movements, mainly in sports; for active young people, between 20 and 30 years old, the incidence of
Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the
Despite osteoarthritis (OA) representing a large burden for healthcare systems, there remains no effective intervention capable of regenerating the damaged cartilage in OA. Mesenchymal stromal cells (MSCs) are adult-derived, multipotent cells which are a candidate for musculoskeletal cell therapy. However, their precise mechanism of action remains poorly understood. The effects of an intra-articular injection of human bone-marrow derived MSCs into a knee
Novel biomaterials are being developed and studied, intended to be applied as bone graft substitute materials. Typically, these materials are being tested in in vitro setups, where among others their cytotoxicity and alkaline phosphatase activity (as a marker for osteoblastic differentiation) are being evaluated. However, it has been reported that in vitro tests correlate poorly with in vivo results and therefore many promising biomaterials may not reach the clinic as a bone graft substitute product. One of the reasons for the poor correlation, may be the minimal complexity of the in vitro tests, as compared to the in vivo environment. Ex vivo models, mimicking the natural tissue environment whilst maintaining control of culture parameters, may be a promising alternative to assess biomaterials for bone formation. Assess the possibility of an ex vivo culture platform to test biomaterials on their potential to stimulate new bone formation.
Introduction and Objective.
Recently, technologies to culture one or more cell types in three dimensions have attracted a great deal of attention in tissue engineering. Particularly, the improved viability, self-renewal capacity, and differentiation potential have been reported for stem cell spheroids. However, it is crucial to modulate spheroid functions with instructive signals to use multi-cellular spheroids in tissue engineering. We have been developing ECM-mimicking fibrous materials decorated with cell-instructive cues, which were incorporated within 3D stem cell spheroids to fine-tune their functions as modular building blocks for bottom-up tissue-engineering applications. In particular, we created composite spheroids of human adipose-derived stem cells (hADSCs) incorporating nanofibers coated with instructive signal of either transforming growth factor-β3 or bone morphogenetic growth factor-2 for chondrogenesis or osteogenesis of stem cells, respectively. The bilayer structure of
Abstract. Objectives. Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for