Various approaches have been implemented to enhance bone regeneration, including the utilization of autologous platelet-rich plasma and bone morphogenetic protein-2. The objective of this study was to evaluate the impact of Marburg Bone Bank-derived bone grafts in conjunction with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (ZA) on
Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and
Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and promotes tissue fibrosis, severely compromising the efficacy of stem cell therapy. Small molecule inhibitors of TGF-β1 can be used to ameliorate the osteogenic disorders caused by high concentrations of TGF-β1, but systemic inhibition of TGF-β1 function will cause strong adverse effects. How to find safe and reliable molecular targets to antagonize TGF-β1 remains to be elucidated. Orphan nuclear receptor Nr4a1, an endogenous inhibitory molecule of TGF-β1, suppresses tissue fibrosis, but its role in BMSC
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces
Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of soft-tissue injury, degree of microbial contamination, and whether systemic and/or local antimicrobial therapies have been administered. Untreated, infection will ultimately lead to non-union, chronic osteomyelitis, or amputation. We report a case series of 10 patients that presented with post-operative infected non-union of the distal femur with or without prior surgery. The cases were performed at Padmashree Dr. D. Y. Patil Hospital, Nerul, Navi Mumbai, India. All the patients’ consents were taken for the study which was carried out in accordance with the Helsinki Declaration. The methodology involved patients undergoing a two-stage procedure in case of no prior implant or a three-stage procedure in case of a previous implant. Firstly, debridement and implant removal were done. The second was a definitive procedure in form of knee arthrodesis with ring fixator and finally followed by limb lengthening surgery. Arthrodesis was planned in view of infection, non-union, severe arthritic, subluxated knee, stiff knee, non-salvage knee joint, and financial constraints. After all the patients demonstrated wound healing in 3 months along with good radiographic
Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote
There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with
Chronic glucocorticoid use causes
Glucocorticoid excess is shown to deteriorate bone tissue integrity, increasing the risk of osteoporosis. Marrow adipogenesis at cost of
Recently, technologies to culture one or more cell types in three dimensions have attracted a great deal of attention in tissue engineering. Particularly, the improved viability, self-renewal capacity, and differentiation potential have been reported for stem cell spheroids. However, it is crucial to modulate spheroid functions with instructive signals to use multi-cellular spheroids in tissue engineering. We have been developing ECM-mimicking fibrous materials decorated with cell-instructive cues, which were incorporated within 3D stem cell spheroids to fine-tune their functions as modular building blocks for bottom-up tissue-engineering applications. In particular, we created composite spheroids of human adipose-derived stem cells (hADSCs) incorporating nanofibers coated with instructive signal of either transforming growth factor-β3 or bone morphogenetic growth factor-2 for chondrogenesis or
3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and
Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for
Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in
Recent researches indicate that both M1 and M2 macrophages play vital roles in tissue repair and foreign body reaction processes. In this study, we investigated the dynamics of M1 macrophages in the induced membrane using a mouse femur critical-sized bone defect model. The Masquelet method (M) and control (C) groups were established using C57BL/6J male mice (n=24). A 3mm-bone defect was created in the right femoral diaphysis followed by a Kirschner wire fixation, and a cement spacer was inserted into the defect in group M. In group C, the bone defect was left uninserted. Tissues around the defect were harvested at 1, 2, 4, and 6 weeks after surgery (n=3 in each group at each time point). Following Hematoxylin and eosin (HE) staining, immunohistochemical staining (IHC) was used to evaluate the CD68 expression as a marker of M1 macrophage. Iron staining was performed additionally to distinguish them from hemosiderin-phagocytosed macrophages. In group M, HE staining revealed a hematoma-like structure, and CD68-positive cells were observed between the spacer and fibroblast layer at 1 week. The number of CD68-positive cells decreased at 2 weeks, while they were observed around the new bone at 4 and 6 weeks. In group C, fibroblast infiltration and fewer CD68-positive cells were observed in the bone defect without hematoma-like structure until 2 weeks, and no CD68-positive cells were observed at 4 and 6 weeks. Iron staining showed hemosiderin deposition in the surrounding area of the new bone in both groups at 4 and 6 weeks. The location of hemosiderin deposition was different from that of macrophage aggregation. This study suggests that M1 macrophage aggregation is involved in the formation of induced membranes and
Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on
Periosteal mesenchymal stem cells (PMSC) are an emerging niche of stem cells to enhance bone healing by tissue engineering process. They have to be differentiated into osteoprogenitors in order to synthesize new bone matrix. In vitro differentiation with specific differentiation medium (DM) is not exactly representative of what occurs in vivo. The interaction between PMSC and growth factors (GF) present in biological matrix is somewhat less understood. The goal of this study is to explore the possibility of spontaneous PMSC differentiation in contact with different biological matrices without DM. 500.000 porcine PMSC were seeded on 6-well plates and cultured with proliferation medium (PM). When reaching 80% confluence, biological samples (n=3) of demineralized bone matrix (DBM), decellularized porcine bone allograft (AOp), human bone allograft (AOh), human periosteum (HP) and human fascia lata (HFL) were added. Negative and positive control wells included cells with only PM or DM, respectively. The differentiation progress was assessed by Alizarin Red staining at days 7, 14 and 21. Bone morphogenetic protein content (BMP 2, 4, 5, 6, 7, 8, 9 and 11) of each sample was also investigated by western blot. Alizarin red highlighted bone nodules neoformation on wells containing AOp, AOh and DBM, like positive controls. HP and HFL wells did not show any nodules. These results are correlated to a global higher BMP expression profile in AOp than in HP and HFL but not statistically significant (p=0.38 and p>.99, respectively). The highest expression in each tissue was that of BMP2 and BMP7, which play an important role in osteoinduction. PMSC are well known to participate to bone formation but, despite BMP presence in HP and HFL, they did not permit to achieve
Successful application of patient derived cells to engineer vascularized bone grafts is often hampered by low cell numbers and lengthy in vitro expansion. With sound induced morphogenesis (SIM), local cell density enhancement was shown to improve microvasculature formation at lower cell concentration than conventional methods [1]. SIM takes advantage of hydrodynamic forces that act on cells to arrange them within a hydrogel. Following, we are evaluating the potential of cell-hydrogel biografts with high local cell density to improve the therapeutic efficacy in clinical scenarios such as anastomosis or bone formation within non-union fractures. To assess anastomosis, human umbilical vein endothelial cells (HUVEC) and human mesenchymal stromal cells (MSC) were mixed at a 1:1 ratio in PEG-based or Dextran-based hydrogels at a final concentration of 2×10. 6. cells×mL. -1. For ectopic bone formation, MSC were resuspended in PEG-based hydrogels at 2×10. 6. or 5×10. 6. cells×mL. -1. , with or without BMP-2. Cells were assembled into distinct patterns at a frequency of 60 Hz. Four biografts of 4 × 9 mm. 2. were implanted at the back of nude mice (total of 7 animals) and harvested after 2 or 8 weeks. Explants were fixed and imaged as whole constructs or embedded in paraffin for histological analysis. Upon explantation, microscopic evaluation indicated that HUVEC were retained within the PEG-hydrogel after 2 weeks and formed a pre-vascular network. In the second study, ectopic bone formation was more pronounced in areas of higher local cell density based on visual inspection. Ongoing experiments are further characterizing bone formation by micro-CT and histological evaluation. Our results indicate that local cell density enhancement by sound requires a lower initial cell concentration than conventional, static seeding methods to achieve comparable microvasculature structures or local
An increasing elderly population means joint replacement surgery numbers are projected to increase, with associated complications such as periprosthetic joint infections (PJI) also rising. PJI are particularly challenging due to antimicrobial resistant biofilm development on implant surfaces and surrounding tissues, with treatment typically involving invasive surgeries and systemic antibiotic delivery. Consequently, functionalisation of implant surfaces to prevent biofilm formation is a major research focus. This study characterises clinically relevant antimicrobials including gentamicin, clindamycin, daptomycin, vancomycin and caspofungin within a silica-based, biodegradable sol-gel coating for prosthetic devices. Antimicrobial activity of the coatings against clinically relevant microorganisms was assessed via disc diffusion assays, broth microdilution culture methods and the MBEC assay used to determine anti-biofilm activity. Human and bovine cells were cultured in presence of antimicrobial sol-gel to determine cytotoxicity using Alamar blue and antibiotic release was measured by LC-MS. Biodegradability in physiological conditions was assayed by FT-IR, ICP-MS and measuring mass change. Effect of degradation products on
Osteoprogenitors on the inner layer of periosteum are the major cellular contributors to appositional bone growth and bone repair by callus formation. Previous work showed that periosteal-derived cells have little or no osteogenic activity under standard in vitro osteogenic culture conditions. This study was conducted to determine what growth factor(s) can activate periosteal osteogenic capacity. This study was conducted with IACUC approval. Periosteum from five equine donors was digested in collagenase for 3-4 hours at 37C. Isolated periosteal cells were maintained in DMEM/10% FBS medium and exposed to PDGF, Prostaglandin E2, BMP-2 and TGF-b3 at a range of concentrations for 72 hours. Changes in osteogenic gene expression (Runx2, OSX and ALP) were measured by qPCR. Periosteal cells were pre-treated with TGF-b3 or maintained in control medium were transferred into basal or osteogenic medium. Osteogenic status was assessed by Alizarin Red staining for mineralized matrix, ALP enzymatic activity and induction of osteogenic genes. PDGF, PgE2 and BMP-2 had little impact on expression of osteogenic markers by periosteal cells. In contrast, TGF-b3 stimulated significant increases in Osterix (over 100-fold) ALP expression (over 70-fold). Pre-treating periosteal cells with TGF-b3 for 72 hours stimulated rapid cell aggregation and aggregate mineralization once cells were transferred to osteogenic medium, while cells not exposed to TGF-b3 exhibited minimal evidence of osteogenic activity. This study indicate that TGF-b signaling is vital for periosteal osteogenic activity. Transient ‘priming’ of periosteal cells through TGF-b exposure was sufficient to activate subsequent
Wear debris from implant interfaces is the major factor leading to periprosthetic osteolysis. Fibroblast-like synoviocytes (FLSs) populate the intimal lining of the synovium and are in direct contact with wear debris. This study aimed to elucidate the effect of Ti particles as wear debris on human FLSs and the mechanism by which they might participate in the bone remodeling process during periprosthetic osteolysis. FLSs were isolated from synovial tissue from patients, and the condition medium (CM) was collected after treating FLSs with sterilized Ti particles. The effect of CM was analyzed for the induction of osteoclastogenesis or any effect on