Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 53 - 53
1 Jun 2012
Lam T Hung V Yeung H Yu F Chan C Ng B Lee K Qin L Cheng J
Full Access

Introduction. Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution pQCT (XtremeCT) became available for revolutionary in-vivo microimaging and derivation of bone micro-architectural parameters. Our objective was to use this powerful instrument to study bone qualities in AIS and compare findings with those from healthy controls. Methods. 48 girls with AIS and 84 sex-matched healthy controls were recruited. Cobb angle was measured with standing radiographs, and imaging of the non-dominant distal radius was captured with XtremeCT according to a standard protocol. Results. The mean age was 13·48 years for controls and 13·54 years for patients with AIS (p=0·773). The mean Cobb's angle for AIS was 32·7° (SD 5·8°). Volumetric bone density, cortical thickness, trabecular bone density, meta-trabecular density, inner-trabecular density, bone volume fraction, and trabecular thickness were all lower in patients with AIS than in controls, and differences were statistically significant (p<0·05). Conclusions. This is the first report describing the differences in radiographic bone micro-architectures between patients with AIS and controls. All significant parameters were lower in the AIS group, indicating deranged bony quality that could have an important role in disease initiation or progression in AIS. The exact biomechanical process and how this is related to the etiopathogenesis of AIS warrant further studies. Acknowledgments. This study is supported by RGC-HKSAR (project number 467808 and 468809)


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 224 - 224
1 Sep 2005
Ali A Yang L Saleh M Eastell R
Full Access

Background: The stability of fracture fixation is influenced by the type of fixation, densitometric and geometric structure of the bone. DXA measures the integral mass of trabecular and cortical bone mineral but cannot discriminate between the structurally and mechanically separate constitutes. Distribution and organisation of bone mass (the geometric structure) has the final determination of the mechanical properties of bone. Pq CT scan is able to measure densitometric and geometric parameters of bone structure. However, there are no reports in the literature on the relationship between these measurements and the strength of fracture fixation. Our aim is to study the correlation between geometric and densitometric measurements of Pq CT scan, with the strength of fixation of bicondylar tibial plateau fractures and to assess the role of both trabecular and cancellous bone in that strength.

Method: Eight Fresh frozen human cadaveric tibias were collected from subjects without a medical history of skeletal pathology. The proximal 10% of the tibia was scanned in a peripheral quantitative computer tomography scanner 1mm thick transverse slides, the cancellous and cortical bone mineral density of the proximal tibia were measured. The geometrical parameters: cortical area, trabecular area, bone strength index (BSI) and the Stress strain index (SSI) as non invasive indicators of the mechanical strength of the bone, were also calculated. A bicondylar tibial plateau fracture was simulated, stabilised, and then tested. All tibias were fixed with Dual buttress plating using a standard AO technique. Cyclic axial compression tests were performed. Inter-fragmentary shear displacements were measured using four extensometers. Failure was defined as over 3mm displacement.

Results: Except for the cortical density, there was a strong correlation between failure load and geometric and densitometric parameters. The trabecular density was the best predictor of fixation strength of tibial plateau fracture.

Discussion: Trabecular density is a more reliable parameter to measure than the cortical density. Therefore, the fixation strength of tibial plateau fracture is dominantly influenced by the mechanical properties of cancelous bone. Cortical bone has a secondary role.

These results highlight the importance of fixation techniques that rely on cancellous bone anchoring such as tensioned fine wire fixation in tibial plateau fractures.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 383 - 383
1 Jul 2008
Weaver R Dudhia J Draper E Smith R Goodship A
Full Access

Objective: To challenge the validity of using biomarker concentrations in synovial fluid for the assessment of joint pathology.

Hypothesis: Synovial fluid biomarker concentrations are influenced by both cartilage and synovial fluid volumes.

Methods: Synovial fluid volumes were determined from the equine metacarpophalangeal (MCP), proximal inter-phalangeal (PIP) and distal interphalangeal (DIP) joints, which have different disease prevalences.

Chondrocyte density was calculated from a defined site in each joint.

Cartilage volume was measured by novel application of Peripheral Quantitative Computed Tomography (pQCT).

Cartilage oligomeric matrix protein (COMP), glycos-aminoglycans (GAG) and total protein (TP) concentrations were measured and then adjusted for cartilage and synovial fluid volume and compared between joints.

Results: Mean synovial fluid volume was significantly greater in the MCP than the distal joints (p< 0.0001) (3.2 ±0.5ml, 0.5 ±0.1ml and 0.6 ±0.1ml respectively). In contrast, the DIP had the greatest cartilage volume compared to the proximal joints (5360 ±667mm3 2640mm3, 1940 ±331mm3 respectively). There was no significant difference in the cartilage cellularity between all joints.

The DIP had higher TP, COMP and GAG concentrations, however, when values were expressed per unit cartilage volume the opposite was found, with the MCP then exhibiting significantly higher concentrations.

Conclusions: These data show the joint with the highest prevalence to osteoarthritis has the lowest biomarker synovial fluid concentrations but the highest biomarker levels per unit cartilage, suggesting a higher release. These results indicate that meaningful interpretation of biomarkers in synovial fluid require consideration of both fluid and cartilage volume.


Bone & Joint Open
Vol. 6, Issue 3 | Pages 291 - 297
7 Mar 2025
Zambito K Kushchayeva Y Bush A Pisani P Kushchayeva S Peters M Birch N

Aims

Assessment of bone health is a multifaceted clinical process, incorporating biochemical and diagnostic tests that should be accurate and reproducible. Dual-energy X-ray absorptiometry (DXA) is the reference standard for evaluation of bone mineral density, but has known limitations. Alternatives include quantitative CT (q-CT), MRI, and peripheral quantitative ultrasound (QUS). Radiofrequency echographic multispectrometry (REMS) is a new generation of ultrasound technology used for the assessment of bone mineral density (BMD) at axial sites that is as accurate as quality-assured DXA scans. It also provides an assessment of the quality of bone architecture. This will be of direct value and significance to orthopaedic surgeons when planning surgical procedures, including fracture fixation and surgery of the hip and spine, since BMD alone is a poor predictor of fracture risk.

Methods

The various other fixed-site technologies such as high-resolution peripheral q-CT (HR-pQCT) and MRI offer no further significant prognostic advantages in terms of assessing bone structure and BMD to predict fracture risk. QUS was the only widely adopted non-fixed imaging option for bone health assessment, but it is not considered adequately accurate to provide a quantitative assessment of BMD or provide a prediction of fracture risk. In contrast, REMS has a robust evidence base that demonstrates its equivalence to DXA in determining BMD at axial sites. Fracture prediction using REMS, combining the output of fragility information and BMD, has been established as more accurate than when using BMD alone.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 820 - 829
15 Dec 2021
Schmidutz F Schopf C Yan SG Ahrend M Ihle C Sprecher C

Aims

The distal radius is a major site of osteoporotic bone loss resulting in a high risk of fragility fracture. This study evaluated the capability of a cortical index (CI) at the distal radius to predict the local bone mineral density (BMD).

Methods

A total of 54 human cadaver forearms (ten singles, 22 pairs) (19 to 90 years) were systematically assessed by clinical radiograph (XR), dual-energy X-ray absorptiometry (DXA), CT, as well as high-resolution peripheral quantitative CT (HR-pQCT). Cortical bone thickness (CBT) of the distal radius was measured on XR and CT scans, and two cortical indices mean average (CBTavg) and gauge (CBTg) were determined. These cortical indices were compared to the BMD of the distal radius determined by DXA (areal BMD (aBMD)) and HR-pQCT (volumetric BMD (vBMD)). Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC) were used to compare the results and degree of reliability.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 268 - 272
1 Feb 2020
Diarbakerli E Savvides P Wihlborg A Abbott A Bergström I Gerdhem P

Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test. Results. Compared with controls, adolescents with idiopathic scoliosis had mean lower DXA values in the left femoral neck (0.94 g/cm. 2. (SD 0.14) vs 1.00 g/cm. 2. (SD 0.15)), left total hip (0.94 g/cm. 2. (SD 0.14) vs 1.01 g/cm. 2. (SD 0.17)), L1 to L4 (0.99 g/cm. 2. (SD 0.15) vs 1.06 g/cm. 2. (SD 0.17)) and distal radius (0.35 g/cm. 2. (SD 0.07) vs 0.39 g/cm. 2. (SD 0.08; all p ≤ 0.024), but not in the mid-radius (0.72 g/cm. 2. vs 0.74 g/cm. 2. ; p = 0.198, independent t-test) and total body less head (1,559 g (SD 380) vs 1,649 g (SD 492; p = 0.0.247, independent t-test). Compared with controls, adolescents with idiopathic scoliosis had lower trabecular volume bone mineral density (BMD) on pQCT in the distal radius (184.7 mg/cm. 3. (SD 40.0) vs 201.7 mg/cm. 3. (SD 46.8); p = 0.029), but not in other parts of the radius or the tibia (p ≥ 0.062, Mann-Whitney U test). Conclusion. In the present study, idiopathic scoliosis patients seemed to have lower BMD at central skeletal sites and less evident differences at peripheral skeletal sites when compared with controls. Cite this article: Bone Joint J 2020;102-B(2):268–272


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 376 - 376
1 Mar 2004
Ali AM Yang L Wigderowitz C Saleh M Eastell R
Full Access

Objective: To examine the relationship between three measurements of bone quality and bone strength of the tibial plateau, and the relationships between these measurements. Methods: The bone quality of sixteen cadaveric tibias was assessed for density and architecture using three methods: DXA, pQCT, and spectral analysis of digitised radiographs. These bone quality measurements were correlated with the þxation strength of a bicondylar plateau fracture, obtained by mechanical testing. Results: All three techniques correlate strongly with the mechanical strength of the þxed tibial plateau, with the highest correlation being with DXA (r=0.81, P< 0.001), and pQCT (r=0.79, P< 0.001); followed by spectral analysis (r= 0.5, P,0.01). DXA correlates strongly with pQCT (r=0.95, P< 0.001); Whereas, spectral analysis has a weaker correlation with both DXA (r=0.65, P< 0.01), and pQCT (r=0.69, P< 0.01). Discussion: This is the þrst study of bone quality assessment in the tibial plateau, and as with studies at other sites, DXA showed that BMD has the best correlation with mechanical failure. Both DXA and pQCT are a reßection of density assessment which explains the strong correlation seen. However, the strength of bone is a function of not just quantity and density but also its structure. This was assessed using spectral analysis which involves image processing and pattern recognition algorithm of the trabecular structure. This measures structure only and this may explain the lower correlation with bone strength. Nevertheless we feel that further analysis may demonstrate a speciþc use of this technique to compliment either DXA or PqCT in providing complete assessment of the bone


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 11 - 11
7 Aug 2024
Warren JP Khan A Mengoni M
Full Access

Objectives. Understanding lumbar facet joint involvement and biomechanical changes post spinal fusion is limited. This study aimed to establish an in vitro model assessing mechanical effects of fusion on human lumbar facet joints, employing synchronized motion, pressure, and stiffness analysis. Methods and Results. Seven human lumbar spinal units (age 54 to 92, ethics 15/YH/0096) underwent fusion via a partial nucleotomy model mimicking a lateral cage approach with PMMA cement injection. Mechanical testing pre and post-fusion included measuring compressive displacement and load, local motion capture, and pressure mapping at the facet joints. pQCT imaging (82 microns isotropic) was carried out at each stage to assess the integrity of the vertebral endplates and quantify the amount of cement injected. Before fusion, relative facet joint displacement (6.5 ± 4.1 mm) at maximum load (1.1 kN) exceeded crosshead displacement (3.9 ± 1.5 mm), with loads transferred across both facet joints. After fusion, facet displacement (2.0 ± 1.2 mm) reduced compared to pre-fusion, as was the crosshead displacement (2.2 ± 0.6 mm). Post-fusion loads (71.4 ± 73.2 N) transferred were reduced compared to pre-fusion levels (194.5 ± 125.4 N). Analysis of CT images showed no endplate damage post-fusion, whilst the IVD tissue: cement volume ratio did not correlate with the post-fusion behaviour of the specimens. Conclusion. An in vitro model showed significant facet movement reduction with stand-alone interbody cage placement. This technique identifies changes in facet movement post-fusion, potentially contributing to subsequent spinal degeneration, highlighting its utility in biomechanical assessment. Conflicts of interest. None. Sources of funding. This work was funded by EPSRC, under grant EP/W015617/1


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 51 - 51
1 Oct 2016
Elston P Churchwell J Goodship A Kerns J Birch H
Full Access

Bone has a number of different functions in the skeleton including the physical roles of support, protection and sound wave conduction. The mechanical properties, required for these different functions varies and can be achieved by compositional adaption of the bone material, in addition to changes in shape and architecture. A number of previous studies have demonstrated the relationship between mechanical function and mineral to collagen ratio in bones from different species. The aim of this study is to test the hypothesis that the mineral to collagen ratio is higher in bone with a mechanically harder matrix within a species. The red deer (Cervus elaphus) (n=6) was chosen as a model for studying bone with extreme properties. The mechanical properties of the antler, metacarpal bone and tympanic bulla were defined by indentation using a bench-top indentation platform (Biodent). The mineral to collagen ratio was quantified using Raman spectroscopy. The deposition of mineral was studied at macro-level using pQCT. The results showed that the hardness (Indentation Distance Increase) was lowest in the metacarpal (8.5µm), followed by the bulla bone (9.4µm) and highest in the antler (14.5µm). Raman spectroscopy showed a mineral:collagen ratio of 1:0.10 (bulla), 1:0.13 (metacarpal) and 1:0.15 (antler) for the different bones. This does not follow the more linear trend previously shown between young's modulus and the mineral:collagen ratio. The location of the mineral appeared to differ between bone types with pQCT revealing locations of concentrated density and banding patterns in antler. Interestingly, Raman spectra showed differences in the amide peaks revealing differences in protein structure. The results reject the hypothesis but also suggest that the organisation of mineral and collagen has an impact on the hardness modulus. We demonstrate that the red deer provides a good model for studying bone specialisation. This work will provide the basis for further investigation into collagen as a controlling factor in mineral deposition


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 249 - 249
1 Sep 2005
Koort J Mäkinen T Suokas E Veiranto M Jalava J Knuuti J Törmälä P Aro H
Full Access

Introduction: Drug delivery systems (DDSs) using resorbable materials have been developed for local therapy of adult osteomyelitis. An ideal DDS would provide controlled release of antibiotic for an extended period and have an osteoconductive component for spontaneous restoration of bone stock. Materials and Methods: The developed DDS consisted of three components: poly(DL)-lactide (PDLLA), ciprofloxacin (AB) and bioactive glass (BG) as the osteoconductive component. Based on in vitro studies, the composite provides a long-lasting release (> 3 months) of the ciprofloxacin at therapeutic levels. The localized osteomyelitis model (Stage IIIA) was applied in adult male New Zealand white rabbits (n=30). A cortical bone window was drilled in the proximal tibial metaphysis and filled with bone cement. 0.1 ml of Staphylococcus aureus lxl0. 5. 1/ml was injected into the defect. Infection was allowed to develop for two weeks, when the bone cement was surgically removed (debridement) and osteomyelitis was confirmed by positive bacteriology. In treated experimental animals, antibiotic containing composite (AB-PDLLA-BG) was impacted into the infected medullary space. In untreated infection control group, the infected the medullary space was subjected only to surgical debridement. In sham-treated control group, the infected medullary space was filled with a composite without antibiotic (PDLLA-BG). In the negative control group, the injection of bacterial suspension was replaced by saline injection. The treatment response was evaluated by FDG-PET and pQCT at 3 and 6 weeks. Concentration of ciprofloxacin was also measured from bone tissue. The statistical significance of the differences was calculated using paired t-test and one-way ANOVA with Tukey t-test. Results: Before infection treatment, 96% of the animals had positive bacterial cultures, while none of the negative control group had positive cultures. At sacrifice, all animals in untreated and sham-treated control groups had culture positive infection, while all bone cultures were negative in treated animals. However, three treated animals had culture positive soft-tissue infection. In untreated infection control group, the FDG uptake was increased many-fold compared with the negative control group both at 3 and 6 weeks. The treatment with AB-PDLLA-BG significantly decreased the FDG uptake and the difference was highly significant (p=0.013) compared the untreated animals. Based on pQCT imaging, the cortical defect healing was faster in treated and negative control animals than in untreated and sham-treated groups. In treated animals, the local therapy resulted in high bone concentration of ciprofloxacin. Conclusions: The current experiment confirmed by collaborative results of both bacteriologic, FDG-PET and pQCT studies that the local infection therapy by the selected antibiotic composite was successful in bone eradication of Staphylococcus aureus pathogen


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 31 - 31
1 May 2012
Findlay C Jameson S Marshall S Walker B Walker C Meek R Nicol A
Full Access

Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this bone density loss. Cross-sectional analysis of the proximal tibia using peripheral quantitative computed tomography (pQCT) enables localised analysis of bone mineral density (BMD) changes. The aim of this study was to establish the pattern of bone density changes in the tibia pre- and post- ACL reconstruction using pQCT image analysis. Methods. Eight patients who underwent ACL reconstruction were included. A cross sectional analysis of the proximal tibia was performed using a pQCT scanner pre-operatively and one to two years post-operatively on both the injured and contralateral (control) knee. The proximal two and three percent slices [S2 and S3] along the tibia were acquired. These were exported to Matlab(tm) and automated segmentation was performed to remove the tibia from its surrounding structures. Cross correlation was applied to co-register pairs of images and patterns of change in BMD were mapped using a t-test (p<0.05). Connected components of pixels with significant change in BMD were created and used to assess the impact of ACL injury & reconstruction on the proximal tibial BMD. Results. Prior to surgical ACL reconstruction, the BMD in the injured leg was significantly reduced relative to the control leg [S2: p=0.002, S3: p=0.002]. Post surgery, the proximal tibial BMD did not change in either leg [Control S2: p=0.102, S3: p=0.181; Injured S2: p=0.093, S3: p=0.439]. The post surgical images demonstrated patterns of increasing BMD surrounding the tunnel in the form of compact bone. Discussion. A significant reduction in proximal tibial BMD was observed in the ACL injured legs relative to control legs. The pattern of pre-operative bone loss was generally observed to be global across the entire slice. No change in BMD was observed following ACL reconstruction, in either injured or control leg. These results indicate that proximal tibial BMD is reduced and does not change after ACL reconstruction


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 158 - 158
1 Jul 2014
Elnikety S Pendegrass C Holden C Blunn G
Full Access

Summary. Our results prove that Demineralised Cortical Bone (DCB) can be used as biological tendon graft substitute, combined with correct surgical technique and the use of suture bone anchor early mobilisation can be achieved. Introduction. Surgical repair of tendon injuries aims to restore length, mechanical strength and function. In severe injuries with loss of tendon substance a tendon graft or a substitute is usually used to restore functional length. This is usually associated with donor site morbidity, host tissue reactions and lack of remodelling of the synthetic substitutes which may result in suboptimal outcome. In this study we hypothesise that DCB present in biological tendon environment with early mobilisation and appropriate tension will result in remodelling of the DCB into ligament tissue rather that ossification of the DCB at traditional expected. Our preparatory cadaveric study (abstract submitted to CORS 2013) showed that the repair model used in this animal study has sufficient mechanical strength needed for this animal study. Methods. 6 mature female sheep undergone surgical resection of the distal 1 cm of the right patellar tendon and osteotomy of patellar tendon attachment at the tibial tuberosity under general anaesthesia. Repair was done using DCB with 2 suture bone anchor. Animals were allowed immediate mobilisation after surgery and were sacrificed at 12 weeks. The force passing through the operated and non-operated legs was assessed preoperatively and at week 3, week 6, week 9 and week 12 bay walking the animals over a force plate. Radiographs were taken immediately after euthanasia, the Patella-Tendon-tibia constructs were retrieved and pQCT scan was done. Histological analysis included tenocytes and chondrocytes cell counts, semi-quantitative scoring of the neo-enthesis and polarised microscopy. Result. In this study, none of the retrieved specimens showed any evidence of ossification of the DCB as proved by the pQCT analysis. One animal failed to show satisfactory progress after week 3, X-rays showed patella alta, on specimen retrieval no damage to the DCB was found, sutures and stitches were intact and no evidence of anchor pullout was found. Force plate analysis of the other 5 animals showed satisfactory progression over time with 44% functional weight bearing at week 3 progressing to 79% at week 12. There was full range of movement of the stifle joint after 12 weeks. Histological analysis proved formation of neo-enthesis with evidence of cellulisation, vascularisation and remodelling of the collagen leading to ligamentisation of the DCB. Discussion. Surgical reconstruction of damaged tendons is technically challenging, patellar tendon injuries presents even more challenging situation as it involves weight bearing joint. It is generally accepted that a period of immobilisation with passive range of movement exercises and protected weight bearing for up to 6 weeks post operatively is usually advised. Some surgeons use offloading metal wire to protect the repair for 6 weeks involving second surgical procedure to remove the wire. Demineralised bone is usually used in orthopaedics to utilise its osteogenic properties as bone graft substitute and to enhance osteogenesis in load bearing situations. In our study we explored a potential new use of the demineralised bone as tendon graft substitute, it acts as collagen scaffold allowing host cells to remodel its fibres into ligament like structure


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 371 - 371
1 Jul 2008
McCann R Colleary G Geddis C Clarke S Marsh D Dickson G
Full Access

Background & Objectives: Osteoporosis is one of the most prevalent bone diseases worldwide with fractures its major clinical consequence. Studies on the effect of osteoporosis on fracture repair are contradictory and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer still eludes us. Subsequently, the aim of this study was to attempt to clarify any such effect. Methods: Osteoporosis was induced in 53 female Sprague-Dawley rats by ovariectomy (OVX) at 3 months. A femoral fracture was produced in these animals 12 weeks later {OVX+Fracture group (OVX+F)}. A control group received the fracture only group (F) at 6 months. The fracture consisted of an open osteotomy held with a unilateral external fixator. Outcome measures include histology, motion detector analysis, pQCT, biomechanical strength testing (BST) and digital radiography. Digital radiographs were taken at time of OVX, fracture (confirming satisfactory reduction) and sacrifice from which relative bone density (BMD) measurements were calculated. Results: OVX+F animals were significantly heavier than F animals at fracture and sacrifice (p< 0.001 for both) and moved significantly less in days 1-4 (p=0.032) and 5-9 (p=0.020) post-fracture. Relative BMD measured in distal femur at fracture and sacrifice was significantly greater in F group (p< 0.001 for both). Furthermore, there was a significant decrease in relative BMD from fracture to sacrifice in OVX+F group (p< 0.001). pQCT showed a significantly greater total BMD {contralateral (p=0.021) and fractured femora (p< 0.001)} and trabecular BMD (p< 0.001 both limbs) in the distal femur of the F group. Histologically, no statistical differences were found, however, the F group generally displayed the most advanced repair. In the contralateral limb, the F group had significantly greater load to failure at 6 (p=0.026) and 8 (p=0.042) weeks and was significantly stiffer at 8 weeks (p=0.050). In the fractured leg, stiffness was significantly greater in the F group at 8 weeks (p=0.001). Conclusion: OVX was linked to increased body weight, decreased motion, decreased BMD (with particular loss in trabecular BMD), and reduced mechanical properties. OVX did not have a significant effect on fracture healing and although there was no reduction in BMD at the fracture site, histology and reduced stiffness suggest it was delayed


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 95 - 95
1 Mar 2008
Tang C Liu D Kontulainen S Guy P Oxland T McKay H
Full Access

This study identified imaging parameter(s) which best predict the mechanical properties of distal tibia. Seventeen human cadaver tibiae were assessed by PQCT at four, eight and ten percent site from distal and tested in compression at the twenty-five percent distal portion. Ultimate compressive loads were recorded with a mean of 8276 ± 2915 N. Spearson rank correlation and stepwise regression analysis revealed that CoA, total BMC, SSI and SSI4-TrA4-CoD4 combination had statistically significant correlations with the failure loads. Among all imaging parameters, SSI had the highest relevance due to its account for geometry, density and material distribution, important factors for structural properties. Musculoskeletal diseases, especially hip fractures, have huge and growing impact on Canadian society. To develop techniques for identification of high risk population, we needed a link between clinical evaluations and laboratory measures of bone health. This study identified imaging parameter(s) which best predict the mechanical properties of distal tibia. Seventeen human cadaver tibiae were considered in this study (mean age seventy-four, SD six years). PQCT was used to assess the four, eight and ten percent site. It measured the cross-sectional area, bone mineral content and bone mineral density of the cortical bone, trabecular bone and combined. Strength Strain Index (SSI) was calculated from these measurements. Each tibia was cut at twenty-five percent distal. Compressive force was applied uniaxially through a custom-made PMMA indentor onto the distal plateau along the longitudinal axis of the tibia at a rate of 10mm/s. Load and displacement data were recorded. Spearson rank correlation and stepwise regression analysis were used to identify individual and combination of imaging variables that were related to ultimate failure load. Ultimate failure loads were recorded with a mean of 8276 ± 2915 N. Cortical area (R_0.72), total BMC (R_0.72) and SSI (R_0.86) had statistically significant correlations with the failure load. Stepwise regression revealed that the combination of SSI, TrA, CoD at 4% site explained the greatest amount of variance (R2 = 0.868) and SSI was the major contributor. SSI takes the polar moment of inertia (geometry), density and distribution of material into account. This explains its relevance towards predicting the ultimate failure load. Please contact author for referenced images


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 230 - 230
1 Sep 2005
Mayhew P Loveridge N Power J Kroger H Parker M Reeve J
Full Access

Areal BMD (aBMD) is relatively poor at discriminating those patients at risk of hip fracture. This study tested the hypothesis that a measure of bending resistance, cross section moment of inertia (CSMI) and section modulus, derived from 3D peripheral quantitative computed tomography (pQCT) images made ex-vivo, would discriminate cases of hip fracture from controls better than areal bone mineral density. The biopsies were from (n = 20, F) subjects that had suffered an intracapsular hip fracture. The control material (n = 23, F) was from post-mortem subjects. Serial pQCT 1mm thick cross-sectional images using the Densiscan 1000 pQCT clinical forearm densitometer were obtained, and matched for location along the neck. The image voxels were converted to units of bone mass, which were then used to derive the mass weighted CSMI (MWCSMI), section modulus and areal bone mineral density, (see Table). The aBMD results showed that the difference between the means of the fracture cases compared to the controls was 9.9% (−0.061g/cm. 2. ; +0.0055g/cm. 2. , −0.127g/cm. 2. ; 95% confidence interval). However, the MWCSMI was 29.5% (−5966mm. 4. ; −8868mm. 4. ,−3066mm. 4. ; 95% confidence interval) lower in the fracture cases compared to the controls, while section modulus was 32.5% (−242mm. 3. ; −133mm. 3. , −352mm. 3. 95% confidence interval) lower. When presented as Z scores the fracture cases had considerably lower section modulus Z scores (mean −1.27 SD, p=0.0001) than aBMD – Z scores (mean −0.5 SD, p=0.07). To simulate the forces experienced during a sideways fall, the model’s neutral axis was rotated by 210°. The results were similar for section modulus to those at 0°. This study suggests that biomechanical analysis of the distribution of bone within the femoral neck may offer a marked improvement in the ability to discriminate patients with an increased risk of intracapsular fracture. Progress towards implementing this form of analysis in clinical densitometry should improve its diagnostic value


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 223 - 223
1 Sep 2005
Li G McILmurray L Ryaby J Carney DH Wang H
Full Access

The thrombin-related peptide, TP508, is a synthetic 23 amino acid peptide, which represents the receptor binding domain of thrombin. TP508 mimics thrombin by interacting with receptors on cells involved in tissue repair. TP508 has been shown to enhance revascularization of injured tissue, and promote soft tissue wound healing, cartilage repair, and fracture repair. The aim of this study is to (1) test the effect of TP508 on bone regeneration during distraction osteogenesis; (2) study the chemotactic effect of TP508 on human osteoblasts. Unilateral tibial osteoectomies were performed and stabilized with MX100 Orthofix lengthener in 5 male adult NZW rabbits. After 7 days, distraction was initiated at rates of 1.4 mm / day for 6 days. TP508 (100 μg/ml, n=2; 10 μg/ml, n=1) or saline (300 μl, n=2) was injected into the osteotomy / lengthening gap at days 1, 7 and 14 post surgery. Animals were sacrificed at 2 weeks after leg lengthening. Bone formation in the regenerate was assessed by radiography, quantitative computed tomography (pQCT) and histology. For chemotaxis studies, MG63 cells were cultured on glass cover slips for three days, and then inverted onto a Dunn chamber slide and sealed with dental wax. Gradients of TP508 (1, 10, 100 μg/ml) were added to the outer well and plain medium to the inner well. A sequence of images of the cells between the wells was taken via a CCD camera for 9 hours at interval of 10 minutes. Movements of individual cells were tracked and statistically analysed by a specially written Macro program. The Rayleigh test for unimodal clustering was used to determine the directional chemotactic movements. The radiographic evaluation indicated a significant increase in new bone in the distraction regenerate in the TP508 treated groups at 1 and 2 weeks. pQCT images at 2 weeks demonstrated more advanced bone formation in the TP508 treated animals compared to the control. The mean total bone mineral density (BMD) of the regenerate, obtained from 3 slices was significantly greater (p = 0.019, t-test) in the TP508 treated group (BMD = 479.20 +/− 35.57 mg/ccm) than that in the saline control group (BMD = 355 +/− 2.83 mg/ccm). The histological evaluation supported the radiographic and the pQCT results. For chemotaxis study, no directional movements of the cells were found in the controls, whereas the MG63 cells were strongly chemotactic to TP508 at 1, 10 and 100 μg/ml concentrations. This preliminary study shows that administration of TP508 enhances bone formation during distraction osteogenesis in the rabbit. The findings also show that TP508 has a chemotactic effect on osteoblasts, consistent with the effect of TP508 on fracture repair. A large animal study is in the process to confirm these findings and explore the underlying mechanisms


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 45 - 45
1 Oct 2016
Niu J Henckel J Hart A Liu* C
Full Access

Osteoarthritis (OA) affects bone cartilage and underlying bone. Mechanically, the underlying bone provides support to the healthy growth of the overlying cartilage. However, with the progress of OA, bone losses and cysts occur in the bone and these would alter the biomechanical behaviour of the joint, and further leading to bone remodelling adversely affect the overlying cartilage. Human femoral head and femoral condyle were collected during hip or knee replacement operation due to the end stage of osteoarthritis (age 50–70), and the cartilage patches were graded and marked. A volunteer patient, with minor cartilage injury in his left knee while the right knee is intact, was used as control. Peripheral quantitative computed tomography (pQCT) was used to scan the bone and to determine the volumetric bone mineral density (vBMD) distribution. The examination of retrieved tissue explants from osteoarthritic patients revealed that patches of cartilage were worn away from the articular surface, and patches of intact cartilage were left. The cysts, ranging from 1 to 10mm were existed in all osteoarthritic bones, and were located close to cartilage defects in the weight-bearing regions, and closely associated with the grade of cartilage defect as measured by pQCT. The bone mineral density (vBMD) distribution demonstrated that the bones around cysts had much higher vBMD than the trabecular bone away from the cysts. Compared to the subchondral bone under thicker cartilage, subchondral bone within cartilage defect has higher vBMD. This may result from the mechanical stimulation as a result of bone-bone direct contact with less protection of cartilage in cartilage defect regions. This study showed an association between cartilage defect and subchondral bone mineral density distribution. Cysts were observed in all osteoarthritic samples and they are located close to cartilage defects in the weight-bearing regions. Cartilage defect altered the loading pattern of the joints, this leading to the bone remodelling and resultant bone structural changes as compared to the normal bone tissues. This work was financially supported by The ARUK Proof of Concept Award (grant no: 21160)


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 45 - 45
1 Mar 2013
Kerns J Gikas P Buckley K Birch H McCarthy I Miles J Briggs T Parker A Matousek P Goodship A
Full Access

Osteoarthritis (OA) is a common, debilitating joint disease involving degeneration of cartilage and bone. It has been suggested that subtle changes in the molecular structure of subchondral bone may precede cartilaginous changes in the osteoarthritic joint. To explore these changes Raman spectroscopy was employed as a diagnostic tool. Raman spectroscopy measures inelastic scattered laser light produced when photons interact with chemical materials. Resultant changes in wavelength form spectra relative to the chemical composition of the given sample: with bone this includes the mineral and matrix components, unlike conventional X-rays. The aim of our study is to explore the hypothesis: Changes in matrix composition of osteoarthritic subchondral bone can be detected with Raman spectroscopy. pQCT and Raman spectroscopy were employed to determine the bone mineral density (BMD) and bone quality, respectively. Ten medial compartment OA and five control (non-OA) tibial plateaus were interrogated and analysis performed to compare OA to control, and medial to lateral compartments. The subchondral bone of the medial OA compartments had higher BMD (p=0.05) and thickness compared to lateral and control samples. Spectral analysis revealed there is no difference between the medial and lateral compartments within either cohort. However, there is a statistically significant (p=0.02) spectral difference between the OA and control specimens. The detection of bone matrix changes in osteoarthritis using Raman spectroscopy contributes to the understanding of the biochemical signature of subchondral bone across diseased and control tibial plateaus. This technique has potential to shed light on the role of bone in osteoarthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 35 - 35
1 Mar 2013
Elnikety S Pendegrass C Alexander S Blunn G
Full Access

Repair of tendon injuries aims to restore length, mechanical strength and function. We hypothesise that Demineralised Cortical Bone (DCB) present in biological tendon environment will result in remodelling of the DCB into ligament tissue. A cadaveric study was carried out to optimize the technique. The distal 1cm of the patellar tendon was excised and DCB was used to bridge the defect. 4 models were examined, Model-1: one anchor, Model-2: 2 anchors, Model-3: 2 anchors with double looped off-loading thread, Model-4: 2 anchors with 3 threads off-loading loop. 6 mature sheep undergone surgical resection of the distal 1cm of the right patellar tendon. Repair was done using DCB with 2 anchors. Immediate mobilisation was allowed, animals were sacrificed at 12 weeks. Force plate assessments were done at weeks 3, 6, 9 and 12. Radiographs were taken and pQCT scan was done prior to histological analysis. In the cadaveric study, the median failure force for the 4 models; 250N, 290N, 767N and 934N respectively. In the animal study, none of the specimens showed evidence of ossification of the DCB. One animal failed to show satisfactory progress, X-rays showed patella alta, on specimen retrieval there was no damage to the DCB and sutures and no evidence of anchor pullout. Functional weight bearing was 79% at week12. Histological analysis proved remodelling of the collagen leading to ligamentisation of the DCB. Results prove that DCB can be used as biological tendon substitute, combined with the use of suture bone anchor early mobilisation can be achieved


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 73 - 73
1 Mar 2010
Claes L Ignatius A Schorlemmer S Horvath D Veeser A
Full Access

Introduction: Lateral callus distraction can be used to treat bone defects and increase bone diameter. However, this requires longitudinal splitting of the bone, which can be avoided by a new method. Material and Methods: Twenty sheep were operated at the medial site of the tibia. After drilling 1 mm holes into the medullary cavity, a titanium plate with a hydroxyapatite coating was attached to the bone surface using a custom-made device. After 10 days this device was distracted 0.3 mm, twice a day until a distance of 6 mm was achieved (n=10). In the control group (n=10), the titanium plate was adjusted to a distance of 6 mm. All sheep received fluorescence labeling. 10 weeks p. o., bone formation underneath the titanium plate was investigated using pQCT, x-ray and histomorphology. Results: In the distraction group there was 5 times more newly formed bone. > Bone columns bridging the space between the cortex and titanium plate were found. In the first 30 days, the bone formation was significantly enhanced in the distraction group as indicated by the fluorescent labeling. Conclusion: A strain induced bone formation is not only possible between two bony surfaces created by an osteotomy, but also between a bony surface and an appropriately designed implant. This new method allows for bone apposition in a large number of bones, which could not be properly treated in the past