Abstract. Objectives. The outcomes from patella fracture have remained dissatisfactory despite advances in treatment, especially from operative fixation1. Frequently, reoperation is required following open reduction and internal fixation (ORIF) of the
Abstract. Objectives. The aim of this study was to develop an in vitro GAG-depleted
Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the
Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central
Anterior knee pain following primary total knee replacement (TKR) is a common problem with average reported rates in the literature of approximately 10%. Symptoms are frequently attributed to the patellofemoral joint, and the treatment of the
Background. Recurrent patellar dislocation in combination with cartilage injures are difficult injuries to treat with confounding pathways of treatment. The aim of this study is to compare the clinical and functional outcomes of patients operated for patellofemoral instability with and without cartilage defects. Methods. 82 patients (mean age-28.8 years) with recurrent patellar dislocations, who underwent soft-tissue or bony procedures, were divided into 2 matched groups (age, sex, follow-up and type of procedure) of 41 each based on the presence or absence of cartilage defects in
The purpose of this study was to provide an anatomical explanation for the presence of medial proximal tibial pain in patients with patellar mal-tracking without identifiable medial tibio-femoral compartment or proximal tibial pathology. Using cadaveric dissection we were consistently able to identify a connection between the medial
Rapid prototyping (RP), especially useful in surgical specialities involving critical three-dimensional relationships, has recently become cheaper to access both in terms of file processing and commercially available printing resources. One potential problem has been the accuracy of models generated. We performed computed tomography on a cadaveric human
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP. After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks. Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.
Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis, which occurs secondary to traumatic joint injury which is known to cause pathological changes to the osteochondral unit. Articular cartilage degradation is a primary hallmark of OA, and is normally associated with end-stage disease. However, subchondral bone marrow lesions are associated with joint injury, and may represent localized bone microdamage. Changes in the osteochondral unit have been traditionally studied using explant models, of which the femoral-head model is the most common. However, the bone damage caused during harvest can confound studies of microdamage. Thus, we used a novel patellar explant model to study osteochondral tissue dynamics and mechanistic changes in bone-cartilage crosstalk. Firstly, we characterized explants by comparing
The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year longitudinally collected clinical data set. Multilevel modelling was conducted using R and 363 ACI procedures were suitable for model inclusion. All longitudinal post-operative Lysholm scores collected after ACI treatment and before a second procedure (such as knee arthroplasty but excluding minor procedures such as arthroscopy) were included. Any patients requiring a bone graft at the time of ACI were excluded. Potential predictors of ACI outcome explored were age at the time of ACI, gender, smoker status, pre-operative Lysholm score, time from surgery, defect location, number of defects, patch type, previous operations, undergoing parallel procedure(s) at the time of ACI, cell count prior to implantation and cell passage number. The best fit model demonstrated that for every yearly increase in age at the time of surgery, Lysholm scores decreased by 0.2 at 1-year post-surgery. Additionally, for every point increase in pre-operative Lysholm score, post-operative Lysholm score at 1 year increased by 0.5. The number of cells implanted also impacted on Lysholm score at 1-year post-op with every point increase in log cell number resulting in a 5.3 lower score. In addition, those patients with a defect on the lateral femoral condyle (LFC), had on average Lysholm scores that were 6.3 points higher one year after surgery compared to medial femoral condyle (MFC) defects. Defect grade and location was shown to affect long term Lysholm scores, those with grade 3 and
Introduction. Patellar tendinopathy is a highly prevalent clinical diagnosis supported by ultrasound changes. Numerous interventions are targeted at improving both symptoms and structure of dysfunctional tendons, however little is known of the diagnostic value in a changing ultrasound profile whilst patient reported outcome measures determine recovery. The aim of this study was to assess if change in ultrasound measure is congruent with change in Victorian Institute of Sport Assessment –
Numerous papers present in-vivo knee kinematics data following total knee arthroplasty (TKA) from fluoroscopic testing. Comparing data is challenging given the large number of factors that potentially affect the reported kinematics. This paper aims at understanding the effect of following three different factors: implant geometry, performed activity and analysis method. A total of 30 patients who underwent TKA were included in this study. This group was subdivided in three equal groups: each group receiving a different type of posterior stabilized total knee prosthesis. During single-plane fluoroscopic analysis, each patient performed three activities: open chain flexion extension, closed chain squatting and chair-rising. The 2D fluoroscopic data were subsequently converted to 3D implant positions and used to evaluate the tibiofemoral contact points and landmark-based kinematic parameters. Significantly different anteroposterior translations and internal-external rotations were observed between the considered implants. In the lateral compartment, these differences only appeared after post-cam engagement. Comparing the activities, a significant more posterior position was observed for both the medial and lateral compartment in the closed chain activities during mid-flexion. A strong and significant correlation was found between the contact-points and landmarks-based analyses method. However, large individual variations were also observed, yielding a difference of up to 25% in anteroposterior position between both methods. In conclusion, all three evaluated factors significantly affect the obtained tibiofemoral kinematics. The individual implant design significantly affects the anteroposterior tibiofemoral position, internal-external rotation and timing of post-cam engagement. Both kinematics and post-cam engagement additionally depend on the activity investigated, with a more posterior position and associated higher
Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and
Abstract. Background. Accurate analysis of the patellar resurfacing is essential to better understand the etiology of patella-femoral problems and dissatisfaction following total knee arthroplasty (TKA). In the current published literature patellar resurfacing is analysed using 2D radiographs. With use of radiographs there is potential for error due to differences in limb positioning, projection, anatomic variability and difficulties in appreciating the cement-bone interface. So, we have developed a CT Scan based 3D modelled technique for accurate evaluation of patellar resurfacing. Methods. This technique for analyses of patellar resurfacing is based on the pre-operative and pos-operative CT Scan data of the patients who underwent TKA with patellar resurfacing. In the first step, accurately landmarked 3D models of pre-op patellae were created from pre-operative CT Scan data in ScanIP software. This model was imported in Geomagic design software and computational model of post-op
One of the most controversial issues in total knee replacement is whether or not to resurface the
This study of collegiate basketball players evaluated change over time (COT) in ultrasound shear wave (SW) elastography metrics across the basketball season, and correlated to morphologic changes on conventional ultrasound imaging, and VISA-P scores. In eleven male collegiate basketball players (mean age 19, age range 18–21),
A risk factor for patellofemoral instability is trochlear dysplasia. Trochleoplasty is a surgical procedure used to reshape the trochlear groove to improve patellar stability. This study seeks to compare pre-op MRI measurements and post operative MRI measurements for patients who have undergone trochleoplasty in correlation with their clinical outcomes scores. Data was collected from a database of patients known to have trochlear dysplasia who underwent trochleoplasty. Radiological Data was collected pre-op and subsequent post op MRI data collected included TT-TG,
Abstract. Objectives. The
Introduction and Objective. Evidence in literature is contradicting regarding outcomes of total knee arthroplasty (TKA) in post-traumatic osteoarthritis (PTOA) and whether they are inferior to TKA in primary osteoarthritis (OA). The aim of this review was to find out if any difference exists in the results of TKA between the two indications. Materials and Methods. The electronic databases MEDLINE, EMBASE, The Cochrane Collaboration, and PubMed were searched and screened in duplicate for relevant studies. The selected studies were further subjected to quality assessment using the modified Coleman method. The primary outcome measure was patient reported outcome, and secondary outcome measures were infection, revision, stiffness, and