Both the patient and the surgeon want hip and knee arthroplasties to last a lifetime. As a result, many patients have been told to defer arthroplasty as long as possible. After arthroplasty, many patients have been advised to limit physical activity. Such management strategies prioritise longevity but compromise lifestyle. Given that the technical aspects of the arthroplasty are satisfactory, modern total hip and knee prostheses have demonstrated remarkable durability. Quantitative studies of
Both the patient and the surgeon want hip and knee arthroplasties to last a lifetime. As a result, many patients have been told to defer arthroplasty as long as possible. After arthroplasty, many patients have been advised to limit physical activity. Such management strategies prioritise longevity but compromise lifestyle. Given that the technical aspects of the arthroplasty are satisfactory, modern total hip and knee prostheses have demonstrated remarkable durability. Quantitative studies of
Increasing pressure to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA) is evident in current health care systems for numerous reasons. Patient autonomy and health care economics has challenged the ability of THA implants to maintain functional integrity before achieving bony union. Although collared stems have been shown to provide improved axial stability, it is unclear if this stability correlates with activity levels or results in improved early function to patients compared to collarless stems. This study aims to examine the role of implant design on
Outcomes in arthroplasty have 3 general sources of variability: the patient, the prosthesis, and the medical-surgical-rehab. services. There are numerous factors that can contribute to earlier-than-usual clinical failure of a TKA (failure = need for revision). There are intense debates regarding design and material factors. There are technical factors such as misalignment, soft tissue imbalance, and inadequate fixation. The greatest source of variability in the outcome equation is, however, the patient. In cohort studies, the amount and type of
There is increased awareness of the health benefits of regular exercise, and quantifying daily activity has become popular. Consequently, there are an increasing number of devices for measuring physical activity. Healthcare professionals and the general public should know the accuracy and limitations of these devices to better determine which ones suit their needs. Ten devices were tested: one ankle-based device, StepWatch™ Activity Monitor (SAM); two wrist-based devices, FitBit Force™ and Nike+ Fuelband SE; seven waist-based devices, Omron HJ-321 Pedometer, Sportline 340 Strider Pedometer, FitBit One™, Samsung Galaxy S4 utilizing the two most popular applications (Runtastic and Noom Walk), and the iPhone 5 utilizing the two most popular applications (Runtastic and ARGUS). Thirty healthy volunteers, mean age 25.6 years (range 20–30) and mean body mass index 23.5 (range 17.3–29.0), completed the following protocol: (1) walk briskly around a 400-M track simulating community ambulation (2) jog around a 400-M track (3) walk slowly for 10-M, approximating household or workplace pace (4) ascend 10 steps, and (5) descend 10 steps. Each subject completed 3 trials for each task. Manual count was the gold standard (Champion Sports Tally Counter). Accuracy and mean percent error were calculated to demonstrate overall performance and any tendencies for over or undercounting. An Aggregate Accuracy Score was calculated using the mean accuracy of each activity and multiplying by a corresponding weighted value for a prototypical person: 400-M walk represents community ambulation, weighted 40%; 10-M walk represents household and workplace ambulation, weighted 30%; 400-M jog represents jogging or running, weighted 20%; Stair Ascent and Descent represent community and household stair use, weighted 5% each. Device rank based on the Aggregate Accuracy Score was #1 FitBit One™ (98.0%), #2 Omron HJ-321 (97.0%), #3 StepWatch™ Activity Monitor (93.3%), #4 Runtastic Google App (92.7%), #5 Runtastic iPhone App (89.5%), #6 Fitbit Force™ (88.2%), #7 Argus iPhone App (87.2%), #8 Sportline 340 Strider (85.7%), #9 Nike Fuelband (76.1%), #10 Noom Walk Google App (75.9%). The FitBit One™ was 99.5%, 97.8%, 96.7%, 94.3%, and 96.9% accurate in the 400-M walk, 10-M walk, 400-M jog, 10 stair ascent, and 10 stair descent, respectively. The Omron HJ-321 was 99.3%, 94.9%, 97.9%, 92.2%, and 91.3% accurate, respectively. The SAM performed well (>95% accurate) in all activities except one, consistently undercounting the 400-M jog by about 25% (95% CI: −27.2% – −23.9%). The FitBit ForceTM and Nike+ Fuelband SE wrist devices were ≥90% accurate in the 400-M walk and 400-M jog, but ≤83% accurate for all other activities. Three of the 4 smartphone applications were >97% accurate in the 400-M walk, 1 of 4 was 97.3% accurate in the 400-M jog, but all devices performed poorly (≤90% accurate) for all other activities. Smartphones are very popular, but current technology is less accurate for measuring overall daily activity. The relatively inexpensive FitBit One™ and Omron HJ-321 pedometer are highly accurate for quantifying a variety of activities, including running. The StepWatch™ Activity Monitor performs well in lower cadence, but consistently undercounted jogging. Wrist-based activity devices are not as accurate as waist-based. Next generation technologies, including smartphones, should undergo accuracy testing before recommending them for daily use.
PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor
The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown
INTRODUCTION. Implant wear testing is traditionally undertaken using standardized inputs set out by ISO or ASTM. These inputs are based on a single individual performing a single activity with a specific implant. Standardization helps ensure that implants are tested to a known set of parameters from which comparisons may be drawn but it has limitations as patients perform varied activities, with different implant sizes and designs that produce different kinematics/kinetics. In this study, wear performance has been evaluated using gait implant specific loading/kinematics and comparing to a combination deep knee bend (DKB), step down (SD) and gait implant specific loading on cruciate retaining (CR) rotating platform (RP) total knee replacements (TKR). This combination activity profile better replicates
Background. There is increasing impetus to use rapid recovery care pathways when treating patients undergoing total hip arthroplasty (THA). The direct anterior (DA) approach is a muscle sparing technique that is believed to support these new pathways. Implants designed for these approaches are available in both collared and collarless variations and understanding the impact each has is important for providing the best treatment to patients. Purpose/Aim of Study. This study aims to examine the role of implant design on implant fixation and patient recovery. Materials and Methods. Patients (n=50) with unilateral hip OA who were undergoing primary DA THA surgery were recruited pre-operatively to participate in this prospective randomized controlled trial. All patients were randomized to receive either a collared (n=25) or collarless (n=25) cementless, fully hydroxyapatite coated femoral stem. Patients were seen at nine appointments (pre-operative, <24 hours post-operation, two-, four-, six-weeks, three-, six-months, one-, and two-years). Patients underwent supine radiostereometric analysis (RSA) imaging <24 hours post-operation prior to leaving the hospital, and at all follow-up appointments. Patients also completed an instrumented timed up-and-go (TUG) test using wearable sensors at each visit, excluding the day of their surgery. Participants logged their steps using Fitbit activity trackers and a seven-day average prior to each visit was recorded. Findings/Results. Twenty-two patients that received a collared stem and 27 patients that received a collarless stem have been assessed. There were no demographic differences between groups. From <24 hours to two weeks the collared implants subsided 0.90 ± 1.20 mm and the collarless implants subsided 3.80 ± 3.37 mm (p=0.001). From two weeks to three months the collared implants subsided 0.67 ± 1.61 mm and the collarless implants subsided 0.45 ± 0.46 mm (p=0.377). Step count was reduced at two weeks to 3108 ± 1388 steps for collared patients and 2340 ± 1685 steps for collarless patients (p=0.072). Step count was increased at three months to 8939 ± 3494 steps for collared patients and 6114 ± 2529 steps for collarless patients (p=0.034). TUG test time was increased at two weeks compared to pre-operatively by 3.45 ± 6.01 s for collared patients and 2.29 ± 4.92 s for collarless patients (p=0.754). TUG test time decreased from two weeks to three months by 6.30 ± 6.05 s for collared patients and 5.68 ± 4.68 s for collarless patients (p=0.922). Conclusions. Collared implants subsided less in the first two weeks compared to collarless implants but subsequent subsidence after two weeks was not significantly different. Presence of a collar on the stem impacted
Introduction. Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell. 1. Failure could occur due to acetabular liner/stem impingement and/or improper cup position. Other contributing factors may include high body mass index,
Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Results. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 0–4% of calculated wear rates being negative compared to 29–39% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years; supine, 16.3 mm. 3. /yr (SD: 27.8) and 11.2 mm. 3. /yr (SD: 18.5) versus standing, 51.3 mm. 3. /yr (SD: 55.9) and 32.7 mm. 3. /yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm. 3. /yr) and 71% of patients at 2 years (Avg: 48.9 mm. 3. /yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Discussion and Conclusion. This study demonstrated TKA wear to occur at a rate of approximately 10 mm. 3. /year and 39 mm. 3. /year in patients imaged supine versus standing, respectively, averaged over 2 years of clinical follow-up. In an effort to eliminate the effect of PE creep and deformation, wear was also calculated between 12 and 24 months as 9.3 mm. 3. (standing examinations), This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, and unknown
Durable humeral component fixation in shoulder arthroplasty is necessary to prevent painful aseptic loosening and resultant humeral bone loss. Causes of humeral component loosening include stem design and material, stem length and geometry, ingrowth vs. ongrowth surfaces, quality of bone available for fixation, glenoid polyethylene debris osteolysis, exclusion of articular particulate debris, joint stability, rotator cuff function, and
BACKGROUND. Telerehabilitation has been shown to both promote effective recovery after shoulder arthroplasty and may improve adherence to treatment. Such systems require demonstration of feasibility, ease of use, efficacy, patient and clinician satisfaction, and overall cost of care, and much of this data has yet to be provided. Few augmented reality rehabilitation approaches have been developed to date. Evidence suggests augmented reality rehabilitation may be equivalent to conventional methods for adherence, improvement of function, and relief of pain seen in these musculoskeletal conditions. We proposed that the development of an augmented reality rehabilitation platform during the pre and postoperative period (including post-shoulder arthroplasty) could be used to track
The advent of modern anatomic shoulder arthroplasty occurred in the 1990's with the revelation that the humeral head dimensions had a fixed ratio between the head diameter and height. As surgeons moved from the concept of balancing soft tissue tension by using variable neck lengths for a given humeral head diameter, a flawed concept based on lower extremity reconstruction, improvements in range of motion and function were immediately observed. Long term outcome has validated this guiding principle for anatomic shoulder replacement with improved longevity of implants, improved patient and surgeon expectations and satisfaction with results. Once the ideal humeral head prosthesis is identified, and its position prepared, the surgeon must use a method to fix the position of the head that is correct in three dimensions and has the security to withstand
INTRODUCTION. Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to structural graft, porous metal bone fillers have shown significantly lower loosening and failure rates potentially due to osseointegration and increased material strength [1]. The strength of porous metal bone fillers used in lower extremities is frequently assessed using compression/shear/torsion test methods, adapted from spine standards. However, these basic methods may lack clinical relevance, and do not provide any insight on the relationship between
The treatment of medial knee osteoarthritis (OA) in conjunction with anterior knee laxity is an issue of debate. Current treatment options include knee joint distraction, unicompartmental knee replacement (UKR) or high tibial osteotomy with anterior cruciate ligament (ACL) reconstruction or total knee replacement. Bone-conserving options are preferred for younger and active patients with intact lateral and patello-femoral compartment. However, still limited experience exists in the field of combining medial UKR and ACL reconstruction. The aim of this study is to retrospectively evaluate the results of combined fixed-bearing UKR and ACL reconstruction, specifically with regard to
Introduction. Gait laboratory measurement of whole-body kinematics and ground reaction forces during a wide range of activities is frequently performed in joint replacement patient diagnosis, monitoring, and rehabilitation programs. These data are commonly processed in musculoskeletal modeling platforms such as OpenSim and Anybody to estimate muscle and joint reaction forces during activity. However, the processing required to obtain musculoskeletal estimates can be time consuming, requires significant expertise, and thus seriously limits the patient populations studied. Accordingly, the purpose of this study was to evaluate the potential of deep learning methods for estimating muscle and joint reaction forces over time given kinematic data, height, weight, and ground reaction forces for total knee replacement (TKR)
Introduction. First-generation annealed HXLPE has been clinically successful at reducing both clinical wear rates and the incidence of osteolysis in total hip arthroplasty. However, studies have observed oxidative and mechanical degradation occurring in annealed HXLPE. Thus, it is unclear whether the favorable clinical performance of 1st generation HXLPE is due to the preservation of bearing surface tribological properties or, at least partially, to the reduction in
Background. Recent clinical studies have suggested that systemic metal ion levels are significantly elevated at midterm follow-up after ceramic-on-metal (COM) bearing. However, it is not clear whether there is a correlation between patient- and surgical-related factors including the lifestyle and elevated levels of serum metal ions following COM total hip arthroplsty (THA). Material and Methods. Two hundred and one patients (234 hips) including 121 COM patients (140 hips) and 80 non-COM patients (94 hips) were enrolled in accordance with the inclusion criteria. The patients were divided into three groups based on the type of surgical bearings used. The Harris Hip Score (HHS), University of California, Los Angeles (UCLA) activity scale score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were measured, and radiographs were obtained for the analysis. Serum metal ion levels of cobalt and chromium were measured using a high-resolution inductively coupled plasma mass spectrometry. Patient- and surgical-related factors were analyzed to determine which group of patients is at a high risk of metal ion-related problems. Results. Significantly higher serum levels of Co and Cr were detected in the serum of the COM THA group (Co: 1.86±4.0 µg/L, range: 0.30 to 34.20 µg/L; Cr: 1.81±2.87 µg/L, range: 0.10 to 27.80 µg/L) than in the serum of the non-COM THA group (Co: 0.27±0.14 µg/L, range: 0.15 to 0.90 µg/L; Cr: 0.19±0.25 µg/L, range; 0.10 to 2.30 µg/L) (p<0.001). The HHS in the COM group was significantly better than that in the non-COM group (p=0.013). The total ROM of the THAs was significantly greater in the 36-mm COM THA group (272.7°, range: 200°–345°) than in the non-COM group (248.5°, range: 135°–300°) (p<0.001). No radiolucency, osteolysis, or loosening was found during the follow-up radiographic examination. The serum Co levels of patients who achieved the squatting position were significantly higher than those of patients who could not squat (Co: p=0.033; Cr: p=0.074). The serum Co and Cr levels of patients who achieved the kneeling position were significantly higher than those of patients who could not kneel (Co: p=0.049; Cr: p=0.031). There was no significant difference between the two groups in the cross-legged sitting position. The metal ion levels of the COM THA group correlated with the total ROM (Co: p=0.0293; Cr: p=0.0399), and those of the patients who were capable of squatting and kneeling were significantly higher than those of the patients who were unable (p<0.05). However, age, BMI, acetabular cup position and
Introduction. Measured outcomes from knee joint arthroplasty (TKA) have primarily focused on surgeon-directed criteria, such as alignment, range of motion measured in the clinic, and implant durability, rather than on functional outcomes. There is strong evidence that subjective reporting by patients fails to capture objective real-life function. 1,2. We believe that the recent emphasis on clinical outcomes desired by the patient, as well as the need to demonstrate value, requires a new approach to patient outcomes that directly monitors ambulatory activity after surgery. We have developed and tested a system that: 1) autonomously identifies patients who are not progressing well in their recovery from TKA surgery; 2) characterizes