Objectives. Intramedullary fixation is considered the most stable treatment for
Background. Cephalomedullary nails are widely used for fixation of unstable
Introduction. Hip fractures, with a global age-standardised incidence rate (per 100,000 population) of 187.2 (2019), are a major public health problem. With a 7.71 billion population worldwide in 2019, hip fractures, in general, are affecting around 14.43 million people per year globally. We aim to provide a nationwide epidemiological analysis of trochanteric fractures and their respective surgical treatments. In this study we research the epidemiology of trochanteric and subtrochanteric fractures, as well as their most common kinds of osteosynthesis, on a nationwide scale in Germany. Method. Data was retrieved from the national database of the German Ministry of Interior. ICD-10-GM and OPS-data from the period of 2006-2020 were analyzed, all patients with trochanteric/subtrochanteric fractures were included. Patients were grouped by age/gender and linear-regression was performed to calculate statistically significant correlations between variables/incidences. Result. 985,104 trochanteric and 178,810 subtrochanteric-fractures were reported during the analyzed period. This calculates to a mean incidence of 80.08±6.34 for pertrochanteric and 14.53±1.50 for subtrochanteric fractures per-million-inhabitants. In both fracture-types, a distinct dependence of incidence on age can be seen. Incidence rates equally rise in both sexes through the age groups with an increase of about 288-fold from those under 60 to those over the age of 90 in
Introduction. Cephalomedullary nailing (CMN) is commonly used for unstable
Background. A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover, biomechanical studies to date have not considered newer designs of IM nails which have been specifically designed to better distribute weight-bearing loads. This aim of this experimental study was to evaluate the re-fracture risk produced by a newer type of nailing system compared to an equivalent plate. Methods. Experimental testing was conducted using fourth generation Sawbones composite femurs and X-Bolt IM hip nail (n=4) and fracture plate (n=4) implants. An unstable
Hip fractures constitute the most debilitating complication of osteoporosis with a steadily increasing incidence in an aging population. Intramedullary nailing of osteoporotic proximal femoral fractures can be challenging because of poor implant anchorage in the femoral head. Recently, cement augmentation of PFNA blades with Polymethylmethycrylate (PMMA) has shown promising results by enhancing the cutout resistance in proximal femoral fractures. The aim of this biomechanical study was to assess the impact of cement augmentation on the fixation strength of TFNA blades and screws within the femoral head, and compare its effect with head elements placed in a center or antero–posterior off–center positions. Eight groups were formed out of 96 polyurethane foam specimens with low density, simulating isolated femoral heads with severe osteoporotic bone. The specimens in each group were implanted with either non–augmented or PMMA–augmented TFNA blades or screws in a center or antero–posterior off–center position, 7 mm anterior or 7 mm posterior. They were mechanically tested in a setup simulating an unstable
Summary. Biomechanically, a 2° screw deviation from the nominal axis in the PFLCP leads to significantly earlier implant failure. Screw deviation relies on a technical error on insertion, but in our opinion cannot be controlled intraoperatively with the existing instrumentation devices. Background. Several cases of clinical failure have been reported for the Proximal Femoral Locking Compression Plate (PFLCP). The current study was designed to investigate the failure mode and to explore biomechanically the underlying mechanism. Specifically, the study sought to determine if the observed failure was due to technical error on insertion or due to implant design. Methods. To exclude patient and fracture type related factors, an abstract foam block model simulating an unstable