Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 40 - 40
1 Mar 2012
Takao M Nishii T Sakai T Nakamura N Yoshikawa H Sugano N
Full Access

Introduction. Lesion location and volume are critical factors to select patients with osteonecrosis for whom resurfacing arthroplasty is appropriate. However, no reliable surgical planning system which can assess relationship between necrotic lesions and the femoral component has been established. We have developed a 3D-MRI-based planning system for resurfacing arthroplasty. The purpose of the present study was to evaluate its feasibility. Methods. The subjects included five patients with osteonecrosis of ARCO stage 3 or 4 who had undergone resurfacing THA at our institute. All patients had an MRI before surgery using 3D-SPGR sequences and fat suppression 3D-SPGR sequencea. In cases where it was difficult to distinguish bone marrow edema and reparative zone on 3D-SPGR images, fat suppression 3D-SPGR sequences were used. Simulation of resurfacing arthroplasty was performed on image analysis software where multidirectional oblique views could be reconstructed. The femoral neck axis was determined by drawing line through centers of two spheres which were fitted to the normal portion of the femoral head and the mid-portion of femoral neck. A femoral component was virtually implanted to align the femoral neck axis and match the implant center and femoral head center. Results. Planning could be performed within 10 minutes in every case. In all cases, size selection of acetabular and femoral component was within 1 size of actually implanted components. This 3D-MRI based planning system was useful to assess proportion and location of necrotic lesion in the preserved portion of femoral head in resurfacing THA. Conclusion. This preliminary study demonstrated that a 3D-MRI based planning system was useful in surgical planning of resurfacing arthroplasty for patients with osteonecrosis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 47 - 47
1 Jan 2017
Cavazzuti L Valente G Amabile M Bonfiglioli Stagni S Taddei F Benedetti M
Full Access

In patients with developmental dysplasia of the hip (DDH) chronic joint dislocation induces remodeling of the soft tissue with contractures, muscle atrophy, especially of the hip abductors muscles, leading to severe motor dysfunction, pain and disability (1). The aim pf the present work is to explore if a correct positioning of the prosthetic implants through 3D skeletal modeling surgical planning technologies and an adequate customized rehabilitation can be beneficial for patients with DDH in improving functional performance. The project included two branches: a methodology branch of software development for the muscular efficiency calculation, which was inserted in the Hip-Op surgical planning system (2), developed at IOR to allow surgical planning for patients with complex hip joint impairment; and a clinical branch which involved the use of the developed software as part of a clinical multicentric randomized trial. 50 patients with DDH were randomized in two groups: a simple surgical planning group and an advanced surgical planning with muscular study group. The latter followed a customized rehabilitation program for the strenghtening of hip abductor muscles. All patients were assessed before surgery (T0) and at 3 (T1) and 6 months (T2) postoperatively using clinical outcome (WOMAC, HHS, ROM, MMT, SF12, 10mt WT) and instrumental measures (Dynamometric MT). Pre- and post-operative musculoskeletal parameters obtained by the software (i.e., leg length discrepancy, hip abductor muscle lengths and lever arms) using Hip-Op during the surgical planning were considered. One Way ANOVA for ROM measurement showed a significant improvement at T2 in patients included in experimental group, as well as WOMAC, HHS and SF12 score. The Dynamometric MT score showed significant differences between at T2 (p<0.009). Spearman's rank correlation coefficients showed a significant correlation between both pre- and post-operative abductors lever arm (mm) and hip abductor muscle strength at T2 (ρ = −0.55 pre-op and ρ = −0.51 post-op, p p<0.012 and p<0.02 respectively) and between the operated pre-postoperative leg length variation (mm) and the hip abductor muscle strength (ρ = −0.55, p p<0.013). Results so far obtained showed an improvement of functional outcomes in patients undergoing hip replacement surgery who followed therapeutic diagnostic pathway sincluding a preoperative planning including the assessment of the abductiors lever arm and a dedicated rehabilitation program for the strenghtening of abductios. Particularly interesting is the inverse relationship between the strength of the hip abductor muscles and the variation of the postoperative abductor lever arm