Background.
Introduction. It has been shown in vitro that human monocytes can phagocytose submicron
In total knee arthroplasty,
Introduction. Periprosthetic osteolysis following total hip arthroplasty is caused mainly by
The numbers of anatomic total shoulder joint replacements (ATSR) is increasing during the past years with encouraging clinical results. However, the survivorship of ATSR is lower as compared to total knee and hip replacements. Although the reasons for revision surgery are multifactorial, wear-associated problems like loosening are well-known causes for long-term failure of ATSR. Furthermore there is lack of valid experimental wear tests for ATSR. Therefore the purpose of this study was to define experimental wear testing parameters for ATSR and to perform a wear study comparing ceramic and metallic humeral heads. Kinetic and kinematic data were adopted from in-vivo loading measurements of the shoulder joint (. orthoload.com. ) and from several clinical studies on shoulder joint kinematics. As activity an ab/adduction motion of 0 to 90° in combination with an ante/retroversion while lifting a load of 2 kg has been chosen. Also a superior-inferior translation of the humeral head has been considered. The wear assessment was performed using a force controlled AMTI joint simulator for 3×10. 6. cycles (Fig. 1) and
Introduction. Durable bone fixation of uncemented porous-coated acetabular cups can be observed at a long-term, however,
Isolated liner and head exchange procedure has been an established treatment method for
Frontal and lateral plain radiographs are the first choice for follow-up observations of the osteotomy boundary that faces the femoral and tibial components of a TKA. However, as plain radiographs provide no information in the image depth direction, it is difficult to determine the exact position of early-stage bone radiolucent lines. A new tomosynthesis technique, which uses both iterative reconstruction and metal extraction methods, has recently attracted attention. We report that this technique provides multi-slice images of the boundary between the metallic implant and the osteotomy surface, which is difficult to observe using conventional multi-slice imaging methods such as CT and MRI, and permits semi-three-dimensional evaluations of
Introduction. Wear debris from polyethylene tibial inserts has been associated with limited longevity of total knee replacements (TKRs). While material factors were studied extensively and considerable progress has been made, there is little knowledge about surgical factors, particularly on how the wear rate is related to implant positioning. It was the purpose of this study to determine the combined effect of patient and implant positioning factors on the volumetric wear rate of TKRs. Our hypothesis was that implant alignment has a significant impact on the wear rate when controlled for other patient factors. Methods. This study included 59 tibial inserts of a cruciate retaining TKR design (Nexgen, Zimmer Inc.). The patients' age, sex, weight, height, and implant size were obtained. All implants were scanned with a coordinate measuring machine. Volumetric wear was determined using an autonomous mathematical reconstruction method (Figure 1). Radiographs were used to determine the anatomic lateral distal femoral angle (aLDFA), anatomic medial proximal tibial angle (aMPTA), femoral tilt angle (FTA) and posterior tibial slope (PTS). Also, the patella position was assessed using the Blackburne-Peel Index (BPI) and the Insall-Salvati Ratio (Figure 2). General linear modeling (SPSS) was conducted in order to determine the most significant patient and implant positioning factors on wear rate. Results. After adjustment for creep, the mean volumetric wear rate was 11.6 mm. 3. /yr (Figure 2). According to the linear regression model wear increased with younger age (p=0.0014) and male sex (p<0.001). The wear rate was independent of patient weight (p=0.17). From the multiple positioning factors only BPI and tibial slope were significant and inversely correlated with wear (p=0.009 and 0.026, respectively). The average ISR was normal before and after surgery, whereas the BPI was only in the normal range prior to surgery, and dropped postop into pseudo-baja (p<0.001, Figure 3). Discussion. The effect of male sex on wear volume can partially be explained by a larger average implant size; however, other unknown confounding factors may play a role too. The effect of younger age is likely related to higher patient activity. Based on previous gait analysis, we speculate that increasing tibial slope results in larger AP translations of the knee joint and thus more wear. Interestingly, BPI remained a highly significant factor when controlled for all other factors. The average BPI clearly dropped post-operatively, whereas the average ISR did not, indicating that not true patella baja, but a joint line elevation occurred due to the reconstruction. Joint line elevation may affect the quadriceps mechanism leading to higher contact forces and subsequent higher wear. Post-operative joint line elevation can be explained by the intention to keep bone loss at a minimum, while using thick polyethylene inserts. Further studies are needed to determine the trade-offs between bone conservation and reduction of wear rate. However, this study has revealed the importance of surgical factors regarding
Introduction. Large-scale retrieval studies have shown backside wear in tibial inserts is dependent on the surface roughness of the tibial tray. Manufacturers acknowledge this design factor and have responded with the marketing of mirror-finished trays, which are clinically proven to have lower wear rates in comparison to historically “rough” (e.g. grit blasted) trays. While the relationship between wear and surface roughness has been explored in other polymer applications, the quantitative dependence of backside wear rate on quantitative surface finish has not yet been established for modern devices. The present study evaluates small-excursion
Introduction. Coronal plane alignment is one of the contributing factors to
Introduction. A common phenomenon occurring as a result of reverse total shoulder arthroplasties (RSA) is scapular notching. While bone loss of the scapula may be quantified using radiographic techniques,[1] the material loss on the humeral bearing has not been quantified. Depending on their functional biological activity, a high volume of
Introduction. Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. Materials and Methods. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05. Results. The mean linear wear rate of HXLPE was 0.043 mm/year, compared with 0.109 mm/year for CPE (p<0.05). The incidence of osteolysis was 1 hip in the CPE group, compared with none in the HXLPE group. No evidence of revision for any reasons was noted. Statistical analysis revealed no significant differences among any variables. Conclusions.
The authors entered patients into a randomised trial to compare the results of the use of cemented and cementless acetabular prostheses between 1993 and 1995. The results of mid-term wear studies at average follow up of eight years were reported in the journal in 2004. We now present long-term results to show the eventual fate of the hip replacements under study. The initial study group of 162 patients was randomly assigned to a modular titanium cup with a polyethylene liner or an all polyethylene cemented cup. All patients received a cemented stem with a 26 mm head and a standardised surgical technique. The
Introduction. RSA is widely accepted as a precise method to asses wear and migration early in the postoperative period. In traditional RSA, one segment defines both the acetabular shell and the polyethylene liner. However, inserting beads into the liner permits employment of the shell and liner as two separate segments, thus enabling distinct analysis of the precision of three measurement methods in determining wear and acetabular shell migration. The purpose of this in vivo follow-up study was to determine if assigning the shell and liner as one combined, or two individual segments affected the precision of RSA measurements of wear and shell stability. Methods. The UmRSA program was used to analyze the double examinations of 51 hips to determine if there was a difference in precision among 3 measurement methods: the shell only, the liner only, and the shell + liner combined segment. Tantalum beads were inserted into the liner and pelvic bone surrounding the shell intraoperatively for the purpose of RSA.
Introduction. In vitro studies showed that the anti-oxidative properties of vitamin E stabilize free radicals while retaining the mechanical strength of UHMWPE. The purpose was to evaluate vitamin E diffused
Clinical wear depends on several factors such as implant specific factors (material, design, and sterilization), surgical factors/techniques, and patient-specific factors (weights and activities). The load magnitude for wear testing in the standard protocols (i.e., 2 kN as per ASTM F1714 or 3 kN as per ISO 14243-3) represent an average patient weight and does not address the other “what-if”’ scenarios (i.e., wear vs. patient weights, activities, duration, etc.,). The results from Wear factor was first evaluated using actual wear testing conducted on metal on cross-linked polyethylene bearings along with well-established Dowson's wall bridge equation. As per Dowson-Wallbridge, volumetric wear is V=2.376·KNWR+C or K=V/(2.376·NWR) where V is the volumetric wear in mm3, K is the wear factor in mm3/Nmm, N is the number of cycles, W is the load in Newtons, R is the bearing radius in mm, and C is the creep (assumed to be negligible, i.e., C=0 in this model. 28 mm simulator wear was first used to evaluate wear factor, but since simulator wear presented as a mass loss, these results were converted to volumetric wear using the equation
(m is the wear in mg and r is the density of XLPE in mg/mm3 (=0.923). The Dowson-Wallbridge equation was then validated for predictive accuracy against actual wear testing on the predecessor THR system. The wear factor thus obtained was used to compute the theoretical-wear for other sizes (i.e., 42 and 46 mm bearings). The theoretical-wear was then compared to simulator wear for predictive accuracy.Objective
Methods
The specific factors affecting wear of the ultrahigh molecular weight polyethylene (UHMWPE) tibial component of total knee replacements (TKR) are poorly understood. One recent study demonstrated that lower conforming inserts produced less wear in knee simulators. The purpose of this study is to investigate the effect of insert conformity and design on articular surface wear of postmortem retrieved UHMWPE tibial inserts. Nineteen NexGen cruciate-retaining (NexGen CR) and twenty-five NexGen posterior-stabilized (NexGen PS) (Zimmer) UHWMPE tibial inserts were retrieved at postmortem from fifteen and eighteen patients respectively. Articular surfaces were scanned at 100×100μm using a coordinate measuring machine (SmartScope, OGP Inc.). Autonomous mathematical reconstruction of the original surface was used to calculate volume loss and linear penetration maps of the medial and lateral plateaus. Wear rates for the medial, lateral and total articular surface were calculated as the slope of the linear regression line of volume loss against implantation time. Volume loss due to creep was estimated as the regression intercept. Student t-tests were used to check for significant.INTRODUCTION
METHODS
Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4]. A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes) Finite Element Analysis wear model based on Archard's law and modified time hardening model [5] was used to predict geometrical changes due to wear and deformation, respectively (Figure 1). Subject dependent kinematic and loading conditions were sampled to generate, for both legs, 19 SW simulation runs using a central composite design of response surface method.Introduction
Materials and Methods
Reverse total shoulder arthroplasty (RTSA) is a semi-constrained joint replacement with an articulating cobalt-chromium glenosphere and ultra-high molecular weight polyethylene (PE). Because of its limited load bearing, surgeons and implant manufacturers have not elicited the use of highly cross-linked PE in the shoulder, and to date have not considered excessive PE wear in the reverse shoulder a primary concern. As the number of shoulder procedures is expected to grow exponentially in the next decade, however, it is important to evaluate how new designs and bearing materials interact and to have an understanding of what is normal in well-functioning joint replacements. Currently, no in vivo investigation into RTSA PE wear has been conducted, with limited retrieval and simulation studies. In vitro and in silico studies demonstrate a large range in expected wear rates, from 14.3 mm3/million cycles (MC) to 126 mm3/MC, with no obvious relationship between wear rate and polyethylene diameter. The purpose of this study is to evaluate, for the first time, both volumetric and linear wear rates in reverse shoulder patients, with a minimum six-year follow-up using stereo radiographic techniques. To date, seven patients with a self-reported well-functioning Aequalis Reversed II (Wright Medical Group, Edina, MN, USA) RTSA implant system have been imaged (mean years from surgery = 7.0, range = 6.2 to 9). Using stereo radiographs, patients were imaged at the extents of their range of motion in internal and external rotation, lateral abduction, forward flexion, and with their arm at the side. Multiple arm positions were used to account for the multiple wear vectors associated with activities of daily living and the shoulder's six degrees of motion. Using proprietary software, the position and orientation of the polyethylene and glenosphere components were identified and their transformation matrices recorded. These transformation matrices were then applied to the CAD models of each component, respectively, and the apparent intersection of the glenosphere into the PE recorded. Using previously validated in-house software, volumetric and maximum linear wear depth measurements were obtained. Linear regression was used to identify wear rates.Introduction
Methods