µCT images are commonly analysed to assess changes in bone density and architecture in preclinical murine models. Several platforms provide automated analysis of bone architecture parameters from volumetric regions of interest (ROI). However, segmentation of the regions of subchondral bone to create the volumetric ROIs remains a manual and time-consuming task. This study aimed to develop and evaluate automated pipelines for trabecular bone architecture analysis of mouse
The treatment of fractures of the
Abstract. Objectives. This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the
Abstract. Approximately 20% of primary and revision Total Knee Arthroplasty (TKA) patients require multiple revisions, which are associated with poor survivorship, with worsening outcomes for subsequent revisions. For revision surgery, either endoprosthetic replacements or metaphyseal sleeves can be used for the repair, however, in cases of severe defects that are deemed “too severe” for reconstruction, endoprosthetic replacement of the affected area is recommended. However, endoprosthetic replacements have been associated with high complication rates (high incidence rates of prosthetic joint infection), while metaphyseal sleeves have a more acceptable complication profile and are therefore preferred. Despite this, no guidance exists as to the maximal limit of bone loss, which is acceptable for the use of metaphyseal sleeves to ensure sufficient axial and rotational stability. Therefore, this study assessed the effect of increasing bone loss on the primary stability of the metaphyseal sleeve in the
Due to the increasing life expectancy the incidence of gonarthrosis, the degeneration of articular cartilage and bone in the knee joint, is increasing worldwide. Although the success rate of knee arthroplasties is high, complications like the loosening of the implant necessitate subsequent treatments. Moreover, the morphology and microstructure of the knee joint varies considerably between patients, therefore the anatomical expertise of orthopedic surgeons is essential. In this analysis we therefore investigate the variation and micro-architectural alterations in subchondral bone in osteoarthritis (OA) patients undergoing a knee replacement surgery. We investigate OA bone degenerations using clinical X-rays and micro-computed tomography (micro-CT). Tibial bone samples are collected from 100 patients undergoing a total knee arthroplasty at the Klinikum Wels-Grieskirchen. Images are obtained using an industrial micro-CT scanner RayScan 250E. Microstructural parameters include bone volume fraction and cortical thickness of the subcondral bone and are obtained from micro-CT images with isometric voxel sizes of 50 µm. Using micro-CT, we show a high morphological variation in relation to cortical thickness, both within the respective condyle as well as between the medial and lateral condyle. Cortical thickness seems to correlate with cartilage thickness and knee joint alignment. The results are incorporated into a gonarthrosis database that integrates microstructural parameters via a combined analysis of X-ray and micro-CT data. This database aims to facilitate the assessment of osteoarthritis, i.e. in relation to cartilage degeneration, in future patients on the basis of the investigated patient collective.
The implantation of scaffold-free CTE from suspension culture into growth-plate defects resulted in a significant reduction in growth arrest of the rabbit tibia In childhood and adolescence, the growth plate injury can cause partial premature arrest of growth plate, which can make problems such as leg length discrepancy and angular deformity. Bone bridge resection and variable implantation materials such as fat, bone wax, silastic and craniopalst has been investigated. However, those procedures may show limitations including the control of bone growth and long term safety of implant materials in vivo. As an alternative, homogeneous or heterogeneous cartilage cells and stem cell transplants have been tried. In this method, scaffold for cell transplantation is needed. But, so far the most suitable scaffold has not been established. Recently, some authors generated a cartilage tissue equivalent (CTE) using a suspension culture with biophysical properties similar to native hyaline cartilage. Therefore we are able to transplant the CTE without scaffold to the physeal defect. The purpose of this study was to investigated the effects of a transplantation of a vitro-generated scaffold-free tissue-engineered cartilage tissue equivalent (CTE) using a suspension chondrocyte culture in a rabbit growth arrest model.Summary Statement
Introduction
Osteosynthesis of high-energy metaphyseal
Abstract. Objectives. Current therapies for osteoporosis are limited to generalised antiresorptive or anabolic interventions, which do not target specific regions to improve skeletal health. Moreover, the adaptive changes of separate and combined pharmacological and biomechanical treatments in the ovariectomised (OVX) mouse tibia has not been studied yet. Therefore, this study combines micro- computed tomography (micro-CT) imaging and computational modelling to evaluate the efficacies of treatments in reducing bone loss. Methodology. In vivo micro-CT (10.4µm/voxel) images of the right tibiae of N=18 female OVX C57BL/6 mice were acquired at weeks 14, 16, 18, 20 and 22 of age for 3 groups: mechanical loading (ML), parathyroid hormone (PTH) or combined therapies (PTHML). All mice received either injection of PTH (100μg/kg/day, 5days/week) or vehicle from week 18. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week. Bone adaptation was quantified through spatial changes in bone mineral density (BMD) and strain distribution was obtained from micro-CT-based finite element models. Results. Densitometric parameters improved for all treatment between week 18–20 (10–21%), with the strongest benefits due to loading in the proximal regions (16–35%). At week 22, PTHML treatment induced 23–76% higher bone apposition in the
Introduction and Objective. The geometry of the
Tibial periprosthetic fracture is an important complication of the Oxford Unicompartmental Knee Replacement (OUKR). Primary fixation of cementless OUKR tibial components relies on the interference-fit of the ‘keel’ and a slot in the
Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the
Abstract. Objectives. Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method. Methods. Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and
Abstract. Objective. To compare the clinical and radiological outcome between less invasive stabilization system (LISS, Synthes, Paoli, PA.) and open reduction with internal fixation (ORIF) for the treatment of extraarticular
Abstract. Objectives. Prediction of bone adaptation in response to mechanical loading is useful in the clinical management of osteoporosis. However, few studies have investigated the effect of repeated mechanical loading in the mouse tibia. Therefore, this study uses a combined experimental and computational approach to evaluate the effect of mechanical loading on bone adaptation in a mouse model of osteoporosis. Methods. Six female C57BL/6 mice were ovariectomised (OVX) at week 14 and scanned using in vivo micro computed tomography (10.4µm/voxel) at week 14, 16, 18, 20 and 22. The right tibiae were mechanically loaded in vivo at week 19 and 21 with a 12N peak load, 40 cycles/day, 3 days/week. Linear isotropic homogeneous finite element (microFE) models were created from the tissue mineral density calibrated microCT images. Changes in bone adaptation, densitometric and spatial analyses were measured by comparing the longitudinal images after image registration. Results. Mechanical loading increased periosteal apposition between weeks 18–20, which reduced slightly between weeks 20–22. Periosteal resorption reduced between weeks 18–20. At weeks 20–22, it remained lower than before treatment, but was up to 70% higher than after the first week of loading. Average SED increased due to OVX before decreasing due to mechanical loading. The highest increase in SED was at the
Objectives. We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection. Materials and Methods. Needles were placed in the femoral condyle and
Aim. To investigate the effect of the eight plate position in sagittal plane on tibial slope in temporary epiphysiodesis technique applied to the
Abstract. Objectives. There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two tibial components may be at risk of tibial eminence avulsion fracture, compromising function. This finite element analysis compared intraoperative tibial strains for Bi-UKA to isolated medial unicompartmental arthroplasty (UKA-M) to assess the risk of avulsion. Methods. A validated model of a large, high bone-quality tibia was prepared for both UKA-M and Bi-UKA. Load totalling 450N was distributed between the two ACL bundles, implant components and collateral ligaments based on experimental and intraoperative measurements with the knee extended and appropriately sized bearings used. 95th percentile maximum principal elastic strain was predicted in the
Abstract. Objectives. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model. Methods. In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee. Results. Titanium lattice implants were able to restore the mechanical environment seen in the native tibia for both UKA and TKA designs. Maximum stress at the bone-implant interface ranged from 1.2–3.3MPa compared to 1.3–2.7MPa for the native tibia. The conventional UKA and TKA implants reduced the maximum stress in the bone by a factor of 10 and 9.7 respectively. The conventional UKA and TKA implants caused 71% and 77% of bone surface area to be underloaded compared to the native tibia. Conclusions. Titanium lattice implants can maintain the natural mechanical loading in the
Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics, HTO efficacy may be investigated by a thorough analysis of the ground reaction forces (GRF), whose orientation with respect to patient-specific knee morphology should reflect knee misalignment. Although multi-instrumental assessments are feasible, a customized combination of medical imaging and gait analysis (GA), including GRF data, rarely is considered. The aim of this study was to report an original methodology merging Computed-Tomography (CT) with GA and GFR data in order to depict a realistic patient-specific representation of the knee loading status during motion before and after HTO. Materials and Methods. 25 MKO-affected patients were selected for HTO. All patients received pre-operative clinical scoring, and radiological/instrumental assessments; so far, these were also executed post-operatively at 6-month follow-up on 7 of these patients. State-of-the-art GA was performed during walking and more demanding motor tasks, like squatting, stair-climbing/descending, and chair-rising/sitting. An 8-camera motion capture system, combined with wireless electromyography, and force platforms for GRF tracking, was used together with an own established protocol. This marker-set was enlarged with 4 additional skin-based non-collinear markers, attached around the tibial-plateau rim. While still wearing these markers, all analyzed patients received full lower-limb X-ray in standing posture a CT scan of the knee in weight-bearing Subsequently, relevant DICOMs were segmented to reconstruct the morphological models of the
Targeted delivery of drugs is a major challenge in diseases such as infections and tumors. The aim of this study was to demonstrate that hydroxyapatite (HA) particles can act as a recruiting moiety for various bioactive molecules and as a proof-of-concept demonstrate that the affinity of drugs to hydroxyapatite can exert a biological effect. A bisphosphonate, zoledronic acid (ZA), was used as a model drug. Experiment 1 (ZA seeks HA): Calcium sulphate (CaS)/hydroxyapatite (HA) biomaterial pellets (diameter¸=5 mm, height=2 mm) were implanted in the abdominal muscle pouch of rats. After 2-weeks of implantation, a sub-cutaneous injection of 14C-ZA (0.1 mg/kg) was given. 24 h later, the animals were sacrificed and the uptake of ZA determined in the pellets using scintillation counting. Experiment 2 (Systemically administered ZA seeks HA and exerts a biological effect): A fenestrated implant was filled with the CaS/HA biomaterial and inserted in the