Lower limb muscle power is thought to influence outcome following
total knee replacement (TKR). Post-operative deficits in muscle
strength are commonly reported, although not explained. We hypothesised
that post-operative recovery of lower limb muscle power would be
influenced by the number of satellite cells in the quadriceps muscle at
time of surgery. Biopsies were obtained from 29 patients undergoing TKR. Power
output was assessed pre-operatively and at six and 26 weeks post-operatively
with a Leg Extensor Power Rig and data were scaled for body weight.
Satellite cell content was assessed in two separate analyses, the
first cohort (n = 18) using immunohistochemistry and the second
(n = 11) by a new quantitative polymerase chain reaction (q-PCR)
protocol for Pax-7 (generic satellite cell marker) and Neural Cell
Adhesion Molecule (NCAM; marker of activated cells).Objectives
Methods
TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis. PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by
Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time
Background. Currently, the gold standard for the microbiological diagnosis remains the culturing of preoperative aspirated joint fluid and intraoperative periprosthetic tissue samples, which give false negative results in about 7 % of cases. Lytic bacteriophages are viruses that specifically infect and lyse bacteria within their replication cycle. Aim. The aim of our study was to explore possibilities for the use of bacteriophage K for the detection of live Staphylococcus spp. bacteria in sonicate fluid of infected prosthetic joints, to possibly contribute to the development of a faster, more sensitive, specific and at the same time economical and handy method for the establishment of the right diagnosis. Material and methods. Sonicate fluid samples obtained from 104 patients with revision arthroplasty were analysed. After the optimisation two indirect phage-based methods were used: a) bioluminescence detection of bacterial intracellular ATP released by bacteriophage K mediated lysis and b)
Electromechanical coupling (piezoelectricity) is present in all living beings and provides basis for sense, thoughts and mechanisms of tissue regeneration. Herein, we ventured to assess the influence of MMC in mesenchymal stem cell culture. In this study, we fabricated piezoelectric regenerative scaffolds to assess the role of electromechamical stimulation on tendon regeneration. Tendon cells were selectively stimulated in vitro by mechanical or electromechanical cues using non-piezoelectric or piezoelectric scaffolds and optimal mechanical loading (4% deformation at 0.5 Hz). This was followed up with an in vivo study to assess tendon regeneration in a rat Achilles tendon injury model. P(VDF-TrFE), scaffolds were observed to mimic the fibrous structure of tendon tissue (figure 1) and were capable of producing electrical charges up to 17 pC/N when mechanically loaded (figure 1. Genes associated with tendon specific markers (Col.I/Col III, Scx and Mkx) and mechanosensitive ion channels such as PIEZO1, TRAAK and TRPV1 were significantly upregulated (figure 2). The upregulated genes were validated with individual real time
It is supposed that disturbed vascularization is a major cause for the development of an atrophic non-union. However, an actual study revealed normal vessel formation in human non-union tissues [1]. An animal study using an atrophic non-union model should clarify the influence of the inhibition of angiogenesis by the inhibitor Fumagillin on bone healing and the underlying processes including inflammation, chondrogenesis, angiogenesis and osteogenesis. For each group and time point (3, 7, 14, 21 and 42 days) 5–6 adult female Sprague Dawley rats were analyzed. The tibia was osteotomized and stabilized intramedullary with a k-wire coated with the drug carrier PDLLA (control group) or PDLLA +10% Fumagillin (atrophy group). Microarrays: Total-RNA were pooled per group, labeled with the Agilent single-color Quick-Amp Labeling Kit Cy3 and hybridized on Agilent SurePrint G3 Rat Gene Expression microarrays. After feature extraction and quantile normalization, relevant biological processes were identified using GeneOntology. Genes with an expression value below the 25. percentile were excluded. Heatmaps were used for visualization. The analysis of inflammatory genes revealed an upregulation of monocyte/macrophage- relevant factors such as the chemokines Ccl2 and Ccl12 and the surface marker CD14. Other factors involved in the early inflammation process such as Il1a, Tnf and Il6 were not affected. Chondrogenic markers including Collagen Type II, -IX, -X, Mmp9, Mmp13, Hapln1, Ucma, Runx2, Sox5 and -9 were downregulated in this group. Furthermore, osteogenic factors were less regulated within the middle stage of healing (day 14–21). This gene panel included Bmps, Bmp antagonists, Bmp- and Tgfb receptors, integrines and matrix proteins. qPCR analysis of angiogenic genes showed an upregulation of Angpt2, Fgf1 and -2, but not for Vegfa over the later healing time points. We demonstrated in a previous study that inhibiting angiogenesis in an osteotomy model led to a reduction in vessel formation and to the development of an atrophic non-union phenotype [2]. The microarray analysis indicated no prolonged inflammatory reaction in the atrophy group. But the upregulation of chemokines together with a delay in hematoma degradation signs to a mismatch between recruitment and demand of macrophages from the vessel system. Furthermore, chondrogenesis was completely blocked, which was shown by a downregulation of chondrogenic but also osteogenic markers being involved in chondrogenic processes. A reduced recruitment of MSCs might be a possible explanation. Although, microarray data revealed only minor expression changes regarding angiogenic genes, validation by
Purpose: Chondral injuries of the knee are commonly seen at arthroscopy, yet there is no consensus on the most appropriate treatment method. However, untreated cartilage injury predisposes to osteoarthritis contributing to pain and disability. For cell-based cartilage repair strategies, an ex-vivo expansion phase is required to obtain sufficient numbers of cells needed for therapy. Although recent reports demonstrated the central role of oxygen for the function and differentiation of chondrocytes, little is known of the effect of physiological low oxygen concentrations during the expansion of the cells and whether this alters their chondrogenic capacity. Method: Initial studies of chondrocyte expansion were performed in mature mice, with cells expanded at either atmospheric oxygen tension (21%) or 5% 02 in monolayer cultures. Chondrogenic differentiation was subsequently assessed via micromass culture. Having determined that oxygen tension influences murine chondrocyte expansion and differentiation, similar studies were conducted using adult human chondrocytes taken from knee arthroplasty off-cuts, with mRNA expression of select genes involved in the chondrogenic program analyzed by
Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology.Aims
Methods
Introduction: Articular cartilage has limited capacity for regeneration. Tissue engineering strategies offer future hope for cartilage replacement and repair. In an attempt to mimic functional native cartilage for tissue repair, current research focuses on construct/implant designs that simulate an embryonic like microenvironment to promote cellular differentiation along a chondrogenic lineage. The aim of the present study was, for the first time, to illustrate the differences between human neonatal and adult chondrocytes along with bone marrow stromal cells (HBMSCs) to differentiate the factors that promote chondrogenesis and maintain functional homeostasis. Material and Methods: Adult chondrocytes, neonatal chondrocytes and HBMSCs were cultured in monolayers for 1, 2 and 3 weeks in basal or chondrogenic media. Expression of transcription factor Sox9, Aggrecan (ACAN) and Collagen type II (COL2A)was compared via real time polymerase chain reaction (q-PCR). Alternatively, cells were seeded onto 3D PLGA scaffolds and cultured in vitro for 3 and 6 weeks in basal or chondrogenic media. Paraffin sections of the constructs were stained with Alcian blue/ Sirius red and expression of Collagen type II and Aggrecan was visualised via immunohistochemistry. Results: For monolayer cultures of all three cell types, at week 1, expression of all three genes was down regulated in basal medium compared to levels in chondrogenic medium. By week 2,
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.Aims
Methods