Advertisement for orthosearch.org.uk
Results 1 - 20 of 1104
Results per page:
Bone & Joint Open
Vol. 3, Issue 12 | Pages 960 - 968
23 Dec 2022
Hardwick-Morris M Wigmore E Twiggs J Miles B Jones CW Yates PJ

Aims. Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. Methods. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements. Results. Strong correlations were observed for all EOS measurements (r. s. > 0.9). The strongest correlation with AP radiograph (inter-teardrop line) was observed for functional-ASIS-to-floor (functional) (r. s. = 0.57), much weaker than the correlations between EOS measurements. ASIS-to-ankle measurements exhibited a high correlation to other linear measurements and the highest ICC (r. s. = 0.97). Using anterior superior iliac spine (ASIS)-to-ankle, 33% of patients had an absolute LLD of greater than 10 mm, which was statistically different from the inter-teardrop LLD measurement (p < 0.005). Discussion. We found that the conventional measurement of LLD on AP pelvic radiograph does not correlate well with long leg measurements and may not provide a true appreciation of LLD. ASIS-to-ankle demonstrated improved detection of potential LLD than other EOS and radiograph measurements. Full length, functional imaging methods may become the new gold standard to measure LLD. Cite this article: Bone Jt Open 2022;3(12):960–968


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims. Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning. Methods. A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading. Results. Cortical measures showed varying correlations with the forearm DXA results (range: Pearson correlation coefficient (r) = 0.343 (p = 0.251) to r = 0.521 (p = 0.068)), with none showing statistically significant correlations. Aluminium equivalent grading showed statistically significant correlations with the forearm DXA of the corresponding region of interest (p < 0.017). Conclusion. Cortical measures, cortical indices, and combined cortical scores did not show a statistically significant correlation to forearm DXA measures. Aluminium-equivalent is an easily applicable method for estimation of BMD from digital radiographs in the preoperative setting. Cite this article: Bone Joint Res 2021;10(12):830–839


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1662 - 1668
1 Nov 2021
Bhanushali A Chimutengwende-Gordon M Beck M Callary SA Costi K Howie DW Solomon LB

Aims. The aims of this study were to compare clinically relevant measurements of hip dysplasia on radiographs taken in the supine and standing position, and to compare Hip2Norm software and Picture Archiving and Communication System (PACS)-derived digital radiological measurements. Methods. Preoperative supine and standing radiographs of 36 consecutive patients (43 hips) who underwent periacetabular osteotomy surgery were retrospectively analyzed from a single-centre, two-surgeon cohort. Anterior coverage (AC), posterior coverage (PC), lateral centre-edge angle (LCEA), acetabular inclination (AI), sharp angle (SA), pelvic tilt (PT), retroversion index (RI), femoroepiphyseal acetabular roof (FEAR) index, femoroepiphyseal horizontal angle (FEHA), leg length discrepancy (LLD), and pelvic obliquity (PO) were analyzed using both Hip2Norm software and PACS-derived measurements where applicable. Results. Analysis of supine and standing radiographs resulted in significant variation for measurements of PT (p < 0.001) and AC (p = 0.005). The variation in PT correlated with the variation in AC in a limited number of patients (R. 2. = 0.378; p = 0.012). Conclusion. The significant variation in PT and AC between supine and standing radiographs suggests that it may benefit surgeons to have both radiographs when planning surgical correction of hip dysplasia. We also recommend using PACS-derived measurements of AI and SA due to the poor interobserver error on Hip2Norm. Cite this article: Bone Joint J 2021;103-B(11):1662–1668


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient. Results. Patients with CTL error > 10° (10° to 14°) had stiffer lumbar spines with less mean lumbar flexion (38.9°(SD 11.6°) vs 47.4° (SD 13.1°); p = 0.030), different sagittal balance measured by pelvic incidence-lumbar lordosis mismatch (5.9° (SD 18.8°) vs -1.7° (SD 9.8°); p = 0.042), more pelvic extension when seated (pelvic tilt -9.7° (SD 14.1°) vs -2.2° (SD 13.2°); p = 0.050), and greater change in pelvic tilt between supine and seated positions (12.6° (SD 12.1°) vs 4.7° (SD 12.5°); p = 0.036). The CTL measurement error showed a positive correlation with increased CTL anteversion (r = 0.5; p = 0.001), standing lordosis (r = 0.23; p = 0.050), seated lordosis (r = 0.4; p = 0.009), and pelvic tilt change between supine and step-up positions (r = 0.34; p = 0.010). Conclusion. Differences in spinopelvic mobility may explain the variability of acetabular anteversion measurements made on CTL radiographs. Patients with stiff spines and increased compensatory pelvic movement have less accurate measurements on CTL radiographs. Flexion of the contralateral hip is required to obtain clear CTL radiographs. In patients with lumbar stiffness, this movement may extend the pelvis and increase anteversion of the acetabulum on CTL views. Reliable analysis of acetabular component anteversion in this patient population may require advanced imaging with a CT scan. Cite this article: Bone Joint J 2021;103-B(7 Supple B):59–65


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 41 - 46
1 Jul 2020
Ransone M Fehring K Fehring T

Aims. Patients with abnormal spinopelvic mobility are at increased risk for instability. Measuring the change in sacral slope (ΔSS) can help determine spinopelvic mobility preoperatively. Sacral slope (SS) should decrease at least 10° to demonstrate adequate posterior pelvic tilt. There is potential for different ΔSS measurements in the same patient based on sitting posture. The purpose of this study was to determine the effect of sitting posture on the ΔSS in patients undergoing total hip arthroplasty (THA). Methods. In total, 51 patients undergoing THA were reviewed to quantify the variability in preoperative spinopelvic mobility when measuring two different sitting positions using SS for planning. Results. A total of 32 patients had standardized relaxed sitting radiographs, while 35 patients had standardized flexed sitting images. Of the 32 patients with relaxed sitting views, the mean ΔSS was 20.7° (SD 8.9°). No patients exhibited an increase in SS during relaxed sitting (i.e. anterior pelvic tilt or so-called reverse accommodation). Of the 35 patients with flexed sitting radiographs, the mean ΔSS was only 2.1° (SD 9.7°) with 16/35 (45.71%) showing anterior pelvic tilt, or so-called reverse accommodation, unexpectedly increasing the sitting SS compared to the standing SS. Overall, 18 patients had both relaxed sitting and flexed sitting radiographs. In patients with both types of sitting radiographs, the mean relaxed sit to stand ΔSS was 18.06° (SD 6.07°), while only a 3.00° (SD 10.53°) ΔSS was noted when flexed sitting. There was a mean ΔSS difference of 15.06° (SD 7.67°) noted in the same patient cohort depending on sitting posture (p < 0.001). Conclusion. A 15° mean difference was noted depending on the sitting posture of the patient. Since decisions on component position can be made on preoperative lateral sit-stand radiographs, postural standardization is crucial. If using ΔSS for preoperative planning, the relaxed sitting radiograph is preferred. Cite this article: Bone Joint J 2020;102-B(7 Supple B):41–46


Bone & Joint Open
Vol. 1, Issue 9 | Pages 594 - 604
24 Sep 2020
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To develop a core outcome set of measurements from postoperative radiographs that can be used to assess technical skill in performing dynamic hip screw (DHS) and hemiarthroplasty, and to validate these against Van der Vleuten’s criteria for effective assessment. Methods. A Delphi exercise was undertaken at a regional major trauma centre to identify candidate measurement items. The feasibility of taking these measurements was tested by two of the authors (HKJ, GTRP). Validity and reliability were examined using the radiographs of operations performed by orthopaedic resident participants (n = 28) of a multicentre randomized controlled educational trial (ISRCTN20431944). Trainees were divided into novice and intermediate groups, defined as having performed < ten or ≥ ten cases each for DHS and hemiarthroplasty at baseline. The procedure-based assessment (PBA) global rating score was assumed as the gold standard assessment for the purposes of concurrent validity. Intra- and inter-rater reliability testing were performed on a random subset of 25 cases. Results. In total, 327 DHS and 248 hemiarthroplasty procedures were performed by 28 postgraduate year (PGY) 3 to 5 orthopaedic trainees during the 2014 to 2015 surgical training year at nine NHS hospitals in the West Midlands, UK. Overall, 109 PBAs were completed for DHS and 80 for hemiarthroplasty. Expert consensus identified four ‘final product analysis’ (FPA) radiological parameters of technical success for DHS: tip-apex distance (TAD); lag screw position in the femoral head; flushness of the plate against the lateral femoral cortex; and eight-cortex hold of the plate screws. Three parameters were identified for hemiarthroplasty: leg length discrepancy; femoral stem alignment; and femoral offset. Face validity, content validity, and feasibility were excellent. For all measurements, performance was better in the intermediate compared with the novice group, and this was statistically significant for TAD (p < 0.001) and femoral stem alignment (p = 0.023). Concurrent validity was poor when measured against global PBA score. This may be explained by the fact that they are measuring difference facets of competence. Intra-and inter-rater reliability were excellent for TAD, moderate for lag screw position (DHS), and moderate for leg length discrepancy (hemiarthroplasty). Use of a large multicentre dataset suggests good generalizability of the results to other settings. Assessment using FPA was time- and cost-effective compared with PBA. Conclusion. Final product analysis using post-implantation radiographs to measure technical skill in hip fracture surgery is feasible, valid, reliable, and cost-effective. It can complement traditional workplace-based assessment for measuring performance in the real-world operating room . It may have particular utility in competency-based training frameworks and for assessing skill transfer from the simulated to live operating theatre. Cite this article: Bone Joint Open 2020;1-9:594–604


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 7 - 7
1 Oct 2019
Ransone M Fehring K Fehring TK
Full Access

Introduction. Patients with abnormal spinopelvic mobility are at increased risk for hip instability. Measuring the change in sacral slope (ΔSS) with standing and seated lateral radiographs is commonly used to determine spinopelvic mobility pre-operatively. Sacral slope should decrease at least 10 degrees to demonstrate adequate accommodation. Accommodation of <10 deg necessitates acetabular component position change or use of a dual mobility implant. There is potential for different ΔSS measurements in the same patient based on sitting posture. Methods. 78 patients who underwent THA were reviewed to quantify the variability in pre-operative spinopelvic mobility when two different seated positions (relaxed sitting v. pre-rise sitting) were used in the same patient. Results. 34 patients had standardized pre-rise sitting x-rays, while 44 patients had standardized relaxed sitting x-rays. Of the 44 patients with relaxed sitting x-rays, the mean ΔSS (ΔrSS) was 20.4 degrees. No patients exhibited an increase in sacral slope when sitting (ie; reverse accommodation). Of the 34 patients with pre-rise sitting x-rays, the mean pre-rise sit-stand change (ΔprSS) was only 1.85 degrees with 47% (16/34) showing reverse accommodation, actually increasing the seated sacral slope compared to standing sacral slope. 18 patients had both pre-rise and relaxed sitting x-rays. In patients with both seated x-rays, the mean relaxed sit-stand change in sacral slope (ΔrSS) was 18.1 ± 6.1 degrees and only 3.0 ± 10.5 degrees for pre-rise sit-stand (ΔprSS), with a mean ΔSS difference of the 15.1 degrees (p <0.0001). Conclusion. A 15 degrees error could be made in pre-operative planning depending on the seated posture of the patient. Since decisions on component position or use of dual-mobility are made on pre-operative lateral sit-stand radiographs, postural standardization is critical. The relaxed seated radiograph is the preferred posture at the time of the seated lateral radiograph. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 72 - 72
1 Jan 2018
O'Connor J Hill J Beverland D Dunne N Lennon A
Full Access

This study aimed to assess the effect of flexion and external rotation on measurement of femoral offset (FO), greater trochanter to femoral head centre (GT-FHC) distance, and neck shaft angle (NSA). Three-dimensional femoral shapes (n=100) were generated by statistical shape modelling from 47 CT-segmented right femora. Combined rotations in the range of 0–50° external and 0–50° flexion (in 10° increments) were applied to each femur after they were neutralised (defined as neck and proximal shaft axis parallel with detector plane). Each shape was projected to create 2D images representing radiographs of the proximal femora. As already known, external rotation resulted in a significant error in measuring FO but flexion alone had no impact. Individually, neither flexion nor external rotation had any impact on GT-FHC but, for example, 30° of flexion combined with 50°of external rotation resulted in an 18.6mm change in height. NSA averaged 125° in neutral with external rotation resulting in a moderate increase and flexion on its own a moderate decrease. However, 50° degrees of both produced an almost 30 degree increase in NSA. In conclusion, although the relationship between external rotation and FO is appreciated, the impact of flexion with external rotation is not. This combination results in apparent reduced FO, a high femoral head centre and an increased NSA. Femoral components with NSAs of 130° or 135° may historically have been based on X-ray misinterpretation. This work demonstrates that 2D to 3D reconstruction of the proximal femur in pre-op planning is a challenge


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 47 - 50
1 Jan 2010
Konan S Rayan F Haddad FS

The radiological evaluation of the anterolateral femoral head is an essential tool for the assessment of the cam type of femoroacetabular impingement. CT, MRI and frog lateral plain radiographs have all been suggested as imaging options for this type of lesion. The alpha angle is accepted as a reliable indicator of the cam type of impingement and may also be used as an assessment for the successful operative correction of the cam lesion. We studied the alpha angles of 32 consecutive patients with femoroacetabular impingement. The angle measured on frog lateral radiographs using templating tools was compared with that measured on CT scans in order to assess the reliability of the frog lateral view in analysing the alpha angle in cam impingement. A high interobserver reliability was noted for the assessment of the alpha angle on the frog lateral view with an intraclass correlation coefficient of 0.83. The mean alpha angle measured on the frog lateral view was 58.71° (32° to 83.3°) and that by CT was 65.11° (30° to 102°). A poor intraclass correlation coefficient (0.08) was noted between the measurements using the two systems. The frog lateral plain radiograph is not reliable for measuring the alpha angle. Various factors may be responsible for this such as the projection of the radiograph, the positioning of the patient and the quality of the image. CT may be necessary for accurate measurement of the alpha angle


Aims. The aim of this study was to assess the reproducibility and validity of cross table radiographs for measuring the anteversion of the acetabular component after total hip arthroplasty (THA) and to compare it with measurements using CT scans. Patients and Methods. A total of 29 patients who underwent THA between June 2010 and January 2016 were included. There were 17 men and 12 women. Their mean age was 43 years (26 to 65). Seven patients underwent a bilateral procedure. Thus, 36 THAs were included in the study. Lateral radiographs and CT scans were obtained post-operatively and radiographs repeated three weeks later. The anteversion of the acetabular component was measured using the method described by Woo and Morrey and the ischiolateral method described by Pulos et al and these were compared with the results obtained from CT scans. Results. The mean anteversion was 18.35° (3° to 38°) using Woo and Morrey’s method, 51.45° (30° to 85°) using the ischiolateral method and 21.22° (2° to 48°) using CT scans. The Pearson correlation coefficient was 0.754 for Woo and Morrey’s method and 0.925 for the ischiolateral method. There was a linear correlation between the measurements using the ischiolateral method and those using CT scans. We derived a simple linear equation between the value of the CT scan and that of ischiolateral method to deduce the CT scan value from that of ischiolateral method and vice versa. . Conclusion. The anteversion of the acetabular component measured using both plain radiographic methods was consistently valid with good interobserver reproducibility, but the ischiolateral method which is independent of pelvic tilt was more accurate. As CT is costly, associated with a high dose of radiation and not readily available, the ischiolateral method can be used for assessing the anteversion of the acetabular component. Cite this article: Bone Joint J 2017;99-B:1006–11


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 581 - 585
1 May 2006
Oddy MJ Jones MJ Pendegrass CJ Pilling JR Wimhurst JA

In 20 patients undergoing hybrid total hip arthroplasty, the reproducibility and accuracy of templating using digital radiographs were assessed. Digital images were manipulated using either a ten-pence coin as a marker to scale for magnification, or two digital-line methods using computer software. On-screen images were templated with standard acetate templates and compared with templating performed on hard-copy digital prints. The digital-line methods were the least reliable and accuracy of sizing compared with the inserted prostheses varied between −1.6% and +10.2%. The hard-copy radiographs showed better reproducibility than the ten-pence coin method, but were less accurate with 3.7% undersizing. The ten-pence coin method was the most accurate, with no significant differences for offset or acetabulum, and undersizing of only 0.9%. On-screen templating of digital radiographs with standard acetate templates is accurate and reproducible if a radiopaque marker such as a ten-pence coin is included when the original radiograph is taken


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 597 - 603
1 May 2014
Nomura T Naito M Nakamura Y Ida T Kuroda D Kobayashi T Sakamoto T Seo H

Several radiological methods of measuring anteversion of the acetabular component after total hip replacement (THR) have been described. These studies used different definitions and reference planes to compare methods, allowing for misinterpretation of the results. We compared the reliability and accuracy of five current methods using plain radiographs (those of Lewinnek, Widmer, Liaw, Pradhan, and Woo and Morrey) with CT measurements, using the same definition and reference plane. We retrospectively studied the plain radiographs and CT scans in 84 hips of 84 patients who underwent primary THR. Intra- and inter-observer reliability were high for the measurement of inclination and anteversion with all methods on plain radiographs and CT scans. The measurements of inclination on plain radiographs were similar to the measurements using CT (p = 0.043). The mean difference between CT measurements was 0.6° (-5.9° to 6.8°). Measurements using Widmer’s method were the most similar to those using CT (p = 0.088), with a mean difference between CT measurements of -0.9° (-10.4° to 9.1°), whereas the other four methods differed significantly from those using CT (p < 0.001). This study has shown that Widmer’s method is the best for evaluating the anteversion of the acetabular component on plain radiographs. Cite this article: Bone Joint J 2014; 96-B:597–603


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1203 - 1208
1 Sep 2010
Brunner A Hamers AT Fitze M Herzog RF

The β-angle is a radiological tool for measuring the distance between the pathological head-neck junction and the acetabular rim with the hip in 90° of flexion in patients with femoroacetabular impingement. Initially it was measured using an open-chamber MRI. We have developed a technique to measure this angle on plain radiographs. Correlation analysis was undertaken to determine the relationship between the range of movement and the β-angle in 50 patients with femoroacetabular impingement and 50 asymptomatic control subjects. Inter- and intra-observer reliability of the β-angle was also evaluated. Patients with femoroacetabular impingement had a significantly smaller (p < 0.001) mean β-angle (15.6°, 95% confidence interval (CI) 13.3 to 17.7) compared with the asymptomatic group (38.7°, 95% CI 36.5 to 41.0). Correlation between internal rotation and the β-angle was high in the impingement group and moderate in the asymptomatic group. The β-angle had excellent inter- and intra-observer reliability in both groups. Our findings suggest that the measurement of the β-angle on plain radiography may represent a valid, reproducible and cost-effective alternative to open MRI in the assessment of the pathological bony anatomy in patients with cam, pincer and mixed femoroacetabular impingement


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 306 - 311
1 Mar 2015
Weber M Lechler P von Kunow F Völlner F Keshmiri A Hapfelmeier A Grifka J Renkawitz T

Femoral stem version has a major influence on impingement and early post-operative stability after total hip arthroplasty (THA). The main objective of this study was to evaluate the validity of a novel radiological method for measuring stem version. Anteroposterior (AP) radiographs and three-dimensional CT scans were obtained for 115 patients (female/male 63/72, mean age 62.5 years (50 to 75)) who had undergone minimally invasive, cementless THA. Stem version was calculated from the AP hip radiograph by rotation-based change in the projected prosthetic neck–shaft (NSA*) angle using the mathematical formula ST = arcos [tan (NSA*) / tan (135)]. We used two independent observers who repeated the analysis after a six-week interval. Radiological measurements were compared with 3D-CT measurements by an independent, blinded external institute. We found a mean difference of 1.2° (. sd. 6.2) between radiological and 3D-CT measurements of stem version. The correlation between the mean radiological and 3D-CT stem torsion was r = 0.88 (p < 0.001). The intra- (intraclass correlation coefficient ≥ 0.94) and inter-observer agreement (mean concordance correlation coefficient = 0.87) for the radiological measurements were excellent. We found that femoral tilt was associated with the mean radiological measurement error (r = 0.22, p = 0.02). . The projected neck–shaft angle is a reliable method for measuring stem version on AP radiographs of the hip after a THA. However, a highly standardised radiological technique is required for its precise measurement. . Cite this article: Bone Joint J 2015; 97-B:306–11


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1501 - 1508
1 Nov 2010
Donell ST Darrah C Nolan JF Wimhurst J Toms A Barker THW Case CP Tucker JK

Metal-on-metal total hip replacement has been targeted at younger patients with anticipated long-term survival, but the effect of the production of metal ions is a concern because of their possible toxicity to cells. We have reviewed the results of the use of the Ultima hybrid metal-on-metal total hip replacement, with a cemented polished tapered femoral component with a 28 mm diameter and a cobalt-chrome (CoCr) modular head, articulating with a 28 mm CoCr acetabular bearing surface secured in a titanium alloy uncemented shell. Between 1997 and 2004, 545 patients with 652 affected hips underwent replacement using this system. Up to 31 January 2008, 90 (13.8%) hips in 82 patients had been revised. Pain was the sole reason for revision in 44 hips (48.9%) of which 35 had normal plain radiographs. Peri-prosthetic fractures occurred in 17 hips (18.9%) with early dislocation in three (3.3%) and late dislocation in 16 (17.8%). Infection was found in nine hips (10.0%). At operation, a range of changes was noted including cavities containing cloudy fluid under pressure, necrotic soft tissues with avulsed tendons and denuded osteonecrotic upper femora. Corrosion was frequently observed on the retrieved cemented part of the femoral component. Typically, the peri-operative findings confirmed those found on pre-operative metal artefact reduction sequence MRI and histological examination showed severe necrosis. Metal artefact reduction sequence MRI proved to be useful when investigating these patients with pain in the absence of adverse plain radiological features


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 445 - 450
1 Apr 2017
Marsh AG Nisar A El Refai M Patil S Meek RMD

Aims. The purpose of this study was to evaluate whether an innovative templating technique could predict the need for acetabular augmentation during primary total hip arthroplasty for patients with dysplastic hips. Patients and Methods. We developed a simple templating technique to estimate acetabular component coverage at total hip arthroplasty, the True Cup: False Cup (TC:FC) ratio. We reviewed all patients with dysplastic hips who underwent primary total hip arthroplasty between 2005 and 2012. Traditional radiological methods of assessing the degree of acetabular dysplasia (Sharp’s angle, Tönnis angle, centre-edge angle) as well as the TC:FC ratio were measured from the pre-operative radiographs. A comparison of augmented and non-augmented hips was undertaken to determine any difference in pre-operative radiological indices between the two cohorts. The intra- and inter-observer reliability for all radiological indices used in the study were also calculated. Results. Of the 128 cases reviewed, 33 (26%) needed acetabular augmentation. We found no difference in the median Sharp’s angle (p = 0.10), Tönnis angle (p = 0.28), or centre-edge angle (p = 0.07) between the two groups. A lower TC:FC ratio was observed in the augmented group compared with the non-augmented group (median = 0.66 versus 0.88, p <  0.001). Intra-observer reliability was found to be high for all radiological indices analysed (interclass correlation coefficient (ICC) > 0.7). However, inter-observer reliability was more variable and was only high for the TC: FC ratio (ICC > 0.7). Conclusion. The TC: FC ratio gives an accurate estimate of acetabular component coverage. It can help predict which dysplastic hips are likely to need acetabular augmentation at primary total hip arthroplasty. It has high intra- and inter-observer reliability. Cite this article: Bone Joint J 2017;99-B:445–50


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 289 - 295
1 Mar 1999
Southwell DG Bechtold JE Lew WD Schmidt AH

Visualisation of periacetabular osteolysis by standard anteroposterior (AP) radiographs underestimates the extent of bone loss around a metal-backed acetabular component. We have assessed the effectiveness of standard radiological views in depicting periacetabular osteolysis, and recommend additional projections which make these lesions more visible. This was accomplished using a computerised simulation of radiological views and a radiological analysis of simulated defects placed at regular intervals around the perimeter of a cadaver acetabulum. The AP view alone showed only 38% of the defects over all of the surface of the cup and failed to depict a 3 mm lesion over 83% of the cup. When combined with the AP view, additional 45° obturator-oblique and iliac-oblique projections increased the depiction, showing 81% of the defects. The addition of the 60° obturator-oblique view further improved the visualisation of posterior defects, increasing the rate of detection to 94%. Based on this analysis, we recommend using at least three radiographic views when assessing the presence and extent of acetabular osteolysis


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 431 - 435
1 May 1999
Pradhan R

In total hip replacement, orientation of the cup is critical to the stability of the prosthesis. A new method to determine the angle of planar anteversion is described. A simple mathematical formula uses the measurements taken from anteroposterior radiographs to calculate the planar anteversion without reference to tables or charts. An experimental study in vitro has shown the efficacy of the formula in giving results which are within a clinically acceptable range


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims. It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. Methods. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion. Results. In total, 139 patients were included. Increased spinopelvic motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.05). Loss of hip motion was observed in patients with loss of femoral head contour, cam deformity, and acetabular bone loss (all p < 0.001). A decreased joint space was associated with a decreased ΔPFA (p = 0.040). The presence of disc space narrowing, disc space narrowing > two levels, and disc narrowing involving the L5–S1 segment were associated with decreased spinopelvic motion (all p < 0.05). Conclusion. Preoperative hip OA as assessed on an AP pelvic radiograph predicts spinopelvic motion. These data suggest that specific hip osteoarthritic morphological characteristics listed above alter spinopelvic motion to a greater extent than others. Cite this article: Bone Joint J 2023;105-B(5):496–503


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 783 - 791
1 Aug 2024
Tanaka S Fujii M Kawano S Ueno M Nagamine S Mawatari M

Aims. The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia. Methods. We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure. Results. This study included 127 patients (137 hips). Median follow-up period was ten years (IQR 6 to 15). The median mHHS improved from 59 (IQR 52 to 70) preoperatively to 90 (IQR 73 to 96) at the latest follow-up (p < 0.001). The survival rate was 90% (95% CI 82 to 95) at ten years, decreasing to 21% (95% CI 7 to 48) at 20 years. Fair joint congruity on preoperative hip abduction radiographs and a decreased postoperative anterior wall index (AWI) were identified as independent risk factors for failure. The survival rate for the 42 hips with good preoperative joint congruity and a postoperative AWI ≥ 0.30 was 100% at ten years, and remained at 83% (95% CI 38 to 98) at 20 years. Conclusion. Although the overall clinical outcomes of TOA in patients with advanced osteoarthritis are suboptimal, favourable results can be achieved in selected cases with good preoperative joint congruity and adequate postoperative anterior acetabular coverage. Cite this article: Bone Joint J 2024;106-B(8):783–791